
*Corresponding author: E-mail: ruwand@pdn.ac.lk;

Asian Journal of Research in Computer Science

7(3): 34-48, 2021; Article no.AJRCOS.66504
ISSN: 2581-8260

Automatic Generation of Scripts for Database
Creation from Scenario Descriptions

L. W. Amarasinghe1 and R. D. Nawarathna1*

1
Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya,

Sri Lanka.

Authors’ contributions

This work was carried out in collaboration between both authors. Author LWA performed the literature
review, developed the methods and performed the implementations and experiments. Author RDN

fine-tuned and verified the theoretical formalism of the proposed method and supervised the findings
of this work and the writing of the manuscript. Both authors discussed the results, provided critical

feedback, and contributed to the preparation of the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v7i330180
Editor(s):

(1) Dr. R. Gayathri, Anna University, India.
Reviewers:

(1) Matheel Emaduldeen Abdulmunim, University of technology, Iraq.
(2) Gajendra Sharma, Kathmandu University, Nepal.

Complete Peer review History: http://www.sdiarticle4.com/review-history/66504

Received 12 January 2021
Accepted 20 March 2021

Published 27 March 2021

ABSTRACT

Aims: Database creation is the most critical component of the design and implementation of any
software application. Generally, the process of creating the database from the requirement
specification of a software application is believed to be extremely hard. This study presents a
method to automatically generate database scripts from a given scenario description of the
requirement specification.
Study Design: The method is developed based on a set of natural language processing (NLP)
techniques and a few algorithms. Standard database scenario descriptions presented in popular
textbooks on Database Design are used for the validation of the method.
Place and Duration of Study: Department of Statistics and Computer Science, Faculty of
Science, University of Peradeniya, Sri Lanka, Between December 2019 to December 2020.
Methodology: The description of the problem scenario is processed using NLP operations such as
tokenization, complex word handling, basic group handling, complex phrase handling, structure
merging, and template construction to extract the necessary information required for the entity
relational model. New algorithms are proposed to automatically convert the entity relational model

Original Research Article

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.AJRCOS.66504

35

to the logical schema and finally to the database script. The system can generate scripts for
relational databases (RDB), object relational databases (ORDB) and Not Only SQL (NoSQL)
databases. The proposed method is integrated into a web application where the users can type the
scenario in natural or free text. The user can select the type of database (i.e., one of RDB, ORDB,
NoSQL) considered in their system and accordingly the application generates the SQL scripts.
Results: The proposed method was evaluated using 10 scenario descriptions connected to 10
different domains such as company, university, airport, etc. for all three types of databases. The
method performed with impressive accuracies of 82.5%, 84.0% and 83.5% for RDB, ORDB and
NoSQL scripts, respectively.
Conclusion: This study is mainly focused on the automatic generation of SQL scripts from
scenario descriptions of the requirement specification of a software system. Overall, the developed
method helps to speed up the database development process. Further, the developed web
application provides a learning environment for people who are novices in database technology.

Keywords: Databases; requirement specification; scenario description; natural language processing;

database script; logical schema.

1. INTRODUCTION

Database management systems (DBMS) is a
collection of programs that enables users to
create and maintain databases. DBMS is
therefore a general-purpose software system that
facilitates the processes of defining, constructing,
manipulating, and sharing databases among
various users and applications. Database
technology is making a major impact on the
growing use of computers and it is fair to say that
databases play a critical role in almost all fields in
modern digital society. A database may be
created and maintained manually or the whole
process can be automated.

Generally, the requirements of a system are
documented as a collection of scenarios. A
scenario is a textual description of specific use
cases of a system. End users can freely state
their requirements through scenarios. When a
system is being developed, a database that
captures all the key aspects of the user
scenarios should exist to store data effectively.
Therefore, mapping of a user-written scenario to
a database script directly helps to achieve the
functional requirements of the system. It has
always been a tedious task to follow the entire
set of steps manually in creating a good
database. Converting a scenario given in natural
language into an SQL script would be extremely
beneficial for the database designers. Further, it
will help to minimize human errors involved with
designing enterprise applications. Overall, the
productivity of the system design can be
increased by automating the database creation
process.

As a solution to the above-mentioned issue, a
method is developed in this study to convert a
statement of a scenario of the expected system
written in natural language to a database script
that can be executed to create the database.
Natural language processing (NLP) is one of the
main areas of computer science and artificial
intelligence. NLP includes read, decipher,
understand, and make sense of the languages
that humans use naturally to interface with
computers in both written and spoken contexts.
In the proposed solution, first, the user must
enter the description of the scenario in text
format as the input. The description must be in
the English language and the user can describe
the scenario according to their understanding of
the system. The solution supports three main
database types, specifically, relational databases
(RDBs), object-relational databases (ORDBs)
and NoSQL. Therefore, the output will be an SQL
script that depends on the database type
selected by the user. This solution is
implemented as a web application. One of the
advantages of this web application is that it can
be used as a tool for teaching and learning of the
database creation process.

Therefore, the objectives of this work are to
propose a novel algorithm for the extraction of
key elements and their relationships of a given
scenario description to create the entity relational
model, to develop algorithms to automate the
conversion of entity relation model to a logical
schema and then to SQL scripts and finally to
develop a web application integrating all
algorithms for automating the database script
generation process.

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.AJRCOS.66504

36

According to the literature, studies in this area
either aimed at developing methods to convert
requirement specifications to entity-relationship
(ER) diagrams or unified modeling language
(UML) diagrams such as class diagrams. Some
of the existing work falling under these two
categories are summarized below.

A tool called “Database designer for MySQL” that
allows building effective and clear database
structure visually is described in [1]. It is
mentioned that this tool supports triggers, stored
procedures, reverse engineering of MySQL
databases. The tool is compatible with all types
of MySQL databases such as MyISAM, ISAM,
InnoDB, and BDB. R. Dedhia et al. proposed an
algorithm to generate entity-relationship
diagrams automatically in [2]. The proposed
algorithm focuses on both syntactic analysis and
semantic heuristic for extracting the major
components such as entity, attribute, and the
relation of an entity-relationship diagram.

Also, in [3], an XML-based ER-diagram drawing
and translation tool was proposed by Y. Li, S. Lu
and S. Xu. The tool automatically generates a
relational database schema by converting the ER
diagram. Further, in [4], E. S. Btoush and M. M.
Hammad proposed a method to generate ER
diagrams from requirement specification based
on natural language processing techniques. This
approach provides an opening of using natural
language documents as a source of knowledge
for generating ER data models. One of the
structural approaches is used to parse
specification syntactically based on a predefined
set of heuristics rules. M. Uma at el. in [5]
attempted to develop a method to convert a
database query given in natural language to SQL
format using NLP techniques.

When considering the work on automating
object-oriented analysis and design process, L.
Mich [6] proposed a system called NL-OOPS. It
converts from natural language to object-oriented
requirements using a system called LOLITA
(Large-scale Object-based Language Interactor,
translator and Analyzer). It analyses the user
requirement provided in natural language and
extracts only objects from the description.
However, LOLITA cannot identify attributes and
classes. A method for automating the object-
oriented Analysis (OOA) process using natural
language processing techniques and linguistic
theories was proposed by K. Li, R. G. Dewar and
R. J. Pooley in [7]. They have proposed a
pragmatic intermediate solution for the

identification of classes through the development
of a dialogue algorithm. This method includes a
more comprehensive set of heuristics to
automate the OOA process.

P. More and R. Phalnikar designed a model to
generate UML diagrams from natural language
specifications [8]. This study facilitated the
requirements analysis process and creates UML
diagrams from textual specifications using
natural language processing (NLP) and domain
ontology techniques. In [9], a system is designed
to convert user requirements to a UML class
diagram by H. Herchi and W. B. Abdessalem.
They investigated how NLP techniques and
domain ontologies can be exploited to support
the object-oriented analysis process. This system
in [9], first, accepts user needs in natural
language and then identifies the classes, their
attributes and associations between them to
include them in a structured XML file.

Structural annotations for a large-scale database
were designed by Jordan B. L. Smith et al.
described in [10]. This work describes the design
and creation of an unprecedentedly large
database of over 2400 structural annotations of
nearly 1400 musical recordings. Here structure
refers to the partitioning of a piece of music into
sections and the grouping together of similar or
repeated sections. F.A.C. Fokkema et al.
proposed a method to create a variation
database using the "LSDB-in-a-Box" approach in
[11]. They have developed the Leiden Open
Variation Database (LOVD) software using the
"LSDB-in-a-Box" idea for the easy creation and
maintenance of a fully web-based gene
sequence variation database.

A tool called “EnviroTox” is developed to
generate a curated aquatic toxicology database
to support ecoTTC analysis and development
described in [12]. For this creation of an ecoTTC
tool, a large, diverse environmental data set was
developed from multiple sources, with
harmonization, characterization, and information
quality assessment steps to ensure that the
information could be effectively organized and
mined.

Overall, from the existing work outlined above, it
can be observed that there is no existing system
that can automatically generate RDB, ORDB and
NoSQL scripts directly from the scenario
descriptions of the requirement specification
covering each step of the database creation
process. Therefore, the major contribution of this

Amarasinghe

study is to propose a comprehensive solution to
convert a given scenario description to a
database script in one of RDB, ORDB or NoSQL
database types.

The remainder of this article is organized as
follows. Section 2 presents the methodology of
the proposed system. Results of the method
evaluation are discussed in Section 3. Finally,
Section 4 provides some concluding remarks.

2. METHODOLOGY

The proposed script generation model is
developed based on information extraction using
natural language processing techniques and a
few newly proposed algorithms.
extraction is the process of identification of the
occurrences of a particular class of
objects/concepts and relationships among them
of a given text [13,14]. This study attempts to
extract the required information (i.e., entities,
attributes and relationships) from scenario
descriptions to create tables of the database.
The main steps of the proposed method are

Fig. 1. Overview of the Proposed Model

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

37

study is to propose a comprehensive solution to
ert a given scenario description to a

database script in one of RDB, ORDB or NoSQL

The remainder of this article is organized as
follows. Section 2 presents the methodology of
the proposed system. Results of the method

ssed in Section 3. Finally,
Section 4 provides some concluding remarks.

The proposed script generation model is
developed based on information extraction using
natural language processing techniques and a
few newly proposed algorithms. Information
extraction is the process of identification of the
occurrences of a particular class of
objects/concepts and relationships among them

14]. This study attempts to
extract the required information (i.e., entities,

nd relationships) from scenario
descriptions to create tables of the database.
The main steps of the proposed method are

shown in Fig. 1. The details of each step of the
methodology are presented in the following
subsections.

2.1 Processing of the
Description Using Natural Language
Processing Techniques

A database scenario description is a story or
storyline of use cases of a software system
usually written using a natural language
Examples for such scenarios can be found from
the standard database textbooks such as [15].
The scenario descriptions available in textbooks
are standard, well-written, and widely used for
teaching and learning purposes. Therefore, the
proposed method is developed based on
standard scenario descriptions found in
textbooks. As shown in Fig. 1. first, the scenario
description is extracted from the requirements
specification of the system. The user can enter
any type of scenario as shown in Fig. 2. and
select the type of database among RDB, ORDB
and NoSQL.

Fig. 1. Overview of the Proposed Model

; Article no.AJRCOS.66504

shown in Fig. 1. The details of each step of the
methodology are presented in the following

Processing of the Scenario
Description Using Natural Language

A database scenario description is a story or
storyline of use cases of a software system
usually written using a natural language.
Examples for such scenarios can be found from

d database textbooks such as [15].
The scenario descriptions available in textbooks

written, and widely used for
teaching and learning purposes. Therefore, the
proposed method is developed based on
standard scenario descriptions found in database
textbooks. As shown in Fig. 1. first, the scenario
description is extracted from the requirements

he user can enter
any type of scenario as shown in Fig. 2. and
select the type of database among RDB, ORDB

Amarasinghe

Fig. 2. A sample scenario description

As the first step, the grammar checking tool
identifies the grammar errors and if there are no
grammar errors, then the scenario
go through several NLP operations as indicated
in Fig. 1.

During tokenization, sentences of the scenario
are segmented into tokens, i.e., words, numbers,
punctuations. Then, the complex word handling
module handles complex words and they are
recognized with a combination of lexical entries
and finite-state grammar rules. For example, this
step identifies “Co” or “Inc” or “Ltd” as
“company”. In the basic group handling module,
the system handles basic groups, meaning noun
groups and verb groups. Prepositions and
conjunctions are also considered.

The main aim of the complex-phrase handling
module is to combine the basic groups into
complex phrases. Again, the aim of this step is to
have finite-state rules and thus can be processed
quickly and that results in unambiguous output
phrases. Structure merging model merges
structures that are obtained in the previous step.
Template construction is based on eight general
syntactic templates that cover most of the
relationships among the words. The eight
templates include a verb, noun preposition, verb
preposition, infinitive, modifier, noun coordinate,
verb coordinate and appositive.

2.2 Key Database Elements Extraction

The system can identify which words can be
attributes, entities and relationships
processed scenario description is described in
Section 2.1. To build a fully automated database
script generation system, entities, attributes and
relationships are identified for the given scenario
by using a rule checker. The rule checker
includes the following rules. Attributes are nouns

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

38

Fig. 2. A sample scenario description

As the first step, the grammar checking tool
identifies the grammar errors and if there are no

he scenario descriptions
go through several NLP operations as indicated

During tokenization, sentences of the scenario
are segmented into tokens, i.e., words, numbers,
punctuations. Then, the complex word handling
module handles complex words and they are
recognized with a combination of lexical entries

state grammar rules. For example, this
step identifies “Co” or “Inc” or “Ltd” as
“company”. In the basic group handling module,
the system handles basic groups, meaning noun

. Prepositions and

phrase handling
module is to combine the basic groups into
complex phrases. Again, the aim of this step is to

state rules and thus can be processed
at results in unambiguous output

phrases. Structure merging model merges
structures that are obtained in the previous step.
Template construction is based on eight general
syntactic templates that cover most of the
relationships among the words. The eight
templates include a verb, noun preposition, verb
preposition, infinitive, modifier, noun coordinate,

2.2 Key Database Elements Extraction

can identify which words can be
attributes, entities and relationships from the
processed scenario description is described in
Section 2.1. To build a fully automated database
script generation system, entities, attributes and
relationships are identified for the given scenario

The rule checker
Attributes are nouns

mentioned along with their entity. If there are two
nouns together in the scenario, the second noun
is considered as an attribute. If there are any
personal pronouns and nouns appearing
together, then the noun is considered as an
attribute. If there are any adjective or determiner
and noun are occurring together, then again a
noun can be considered as an attribute. Adverbs
uniquely indicate the primary key of an entity.
Multivalued attributes can be identified us
plural nouns. Derived attributes can be extracted
using a popular attribute list. According to the
user-given scenario, the system identifies entities
using nouns and verbs.

2.3 An XML Script to Represent the Key
Elements

An XML script is considered because XML is the
intermediate language that can easily convert
extracted key elements to entity-relational model
through a web environment. To develop this, the
python language and element tree API which has
a tree structure are used. There are two secti
in the XML file, one for entities and their
attributes, and the other one for entities and their
relationship. Basically, this XML file contains the
entity-relational (ER) model of the system. Next,
it will be parsed to create the logical schema.

2.4 Generating the Logical Schema

In this step, the method maps the entity
(ER) model to the logical schema using the
common ER to Relational mapping algorithm. As
shown in Fig. 3. first, the cardinality details
should be extracted from the preproc
scenario. If there is a one-to-one relationship, the
primary key of “one-side” goes to the other “one
side” as a foreign key as well as if there are one
to-many relationships between two entities, “one
side” primary key goes to the “many

; Article no.AJRCOS.66504

mentioned along with their entity. If there are two
nouns together in the scenario, the second noun
is considered as an attribute. If there are any
personal pronouns and nouns appearing

s considered as an
attribute. If there are any adjective or determiner
and noun are occurring together, then again a
noun can be considered as an attribute. Adverbs
uniquely indicate the primary key of an entity.
Multivalued attributes can be identified using
plural nouns. Derived attributes can be extracted
using a popular attribute list. According to the

given scenario, the system identifies entities

An XML Script to Represent the Key

because XML is the
intermediate language that can easily convert

relational model
through a web environment. To develop this, the
python language and element tree API which has
a tree structure are used. There are two sections
in the XML file, one for entities and their
attributes, and the other one for entities and their
relationship. Basically, this XML file contains the

relational (ER) model of the system. Next,
it will be parsed to create the logical schema.

Generating the Logical Schema

In this step, the method maps the entity-relational
(ER) model to the logical schema using the
common ER to Relational mapping algorithm. As

first, the cardinality details
should be extracted from the preprocessed

one relationship, the
side” goes to the other “one-

side” as a foreign key as well as if there are one-
many relationships between two entities, “one-

side” primary key goes to the “many-side” as a

Amarasinghe

foreign key. Further, if the cardinality is many
many then, a new table is created from two
tables including the primary keys of both tables.

2.5 Generating Database Scripts

To create three types of scripts, the schema file
should contain all the necessary details in a well
defined order. The syntaxes for each script are
defined first and then relevant entities, attributes
and relationships are extracted from the schema
file to put them in the correct place as tables.

2.5.1 Relational databases (RDB) scripts

In the schema refinement phase, the logical
schema is converted to the normalized schema
using 1NF, 2NF, and 3NF. INF and 2NF can be
automated according to the given requirement
specification. But 3NF depends on the functional
dependencies between each attribute of the
entity. For the RDB scripts, the output script is
based on the normalized schema. Fig. 4.
illustrates the system algorithm used to generate
RDB scripts step by step.

2.5.1.1 Normalization algorithm for RDB script

We denote the set of functional dependencies by
F that are specified on relation schema R. It is

Fig. 3. The algorithm used for the generation of the logical schema

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

39

oreign key. Further, if the cardinality is many-to-
many then, a new table is created from two
tables including the primary keys of both tables.

2.5 Generating Database Scripts

To create three types of scripts, the schema file
necessary details in a well-

defined order. The syntaxes for each script are
defined first and then relevant entities, attributes
and relationships are extracted from the schema
file to put them in the correct place as tables.

(RDB) scripts

In the schema refinement phase, the logical
schema is converted to the normalized schema
using 1NF, 2NF, and 3NF. INF and 2NF can be
automated according to the given requirement
specification. But 3NF depends on the functional

etween each attribute of the
entity. For the RDB scripts, the output script is
based on the normalized schema. Fig. 4.
illustrates the system algorithm used to generate

Normalization algorithm for RDB script

e set of functional dependencies by
F that are specified on relation schema R. It is

considered to identify candidate keys by
calculating the closure of attribute sets. Even it is
not likely to find all the candidate keys, it is
possible to identify a fine set of candidate keys
that is needed to do the normalization up to a
better extent. The normalization algorithm and
the 3NF algorithm is shown in figure 5. In the
normalization algorithm, it goes to the 3NF
algorithm if there is only one attribute for the
primary key. If not, then it checks the
dependencies and creates tables for each
dependency. In the 3NF algorithm, determined
non-prime attributes and remove the depending
attributes from the original table are added to a
new table.

2.5.2 Object-Relational Database
scripts

To create ORDB scripts, entities are identified as
objects and all the relevant attributes for each
object are also determined. Figure 6
demonstrates the algorithm for ORDB script
generation. After creating a type of object, a new
table is created. Primary keys and foreign keys
are added as constraints for this script. Both key
constraints are split from the list in the logical
schema by identifying them as “P” and “F”
respectively.

The algorithm used for the generation of the logical schema

; Article no.AJRCOS.66504

considered to identify candidate keys by
calculating the closure of attribute sets. Even it is
not likely to find all the candidate keys, it is

set of candidate keys
that is needed to do the normalization up to a
better extent. The normalization algorithm and
the 3NF algorithm is shown in figure 5. In the
normalization algorithm, it goes to the 3NF
algorithm if there is only one attribute for the
primary key. If not, then it checks the
dependencies and creates tables for each
dependency. In the 3NF algorithm, determined

prime attributes and remove the depending
attributes from the original table are added to a

Relational Database (ORDB)

To create ORDB scripts, entities are identified as
objects and all the relevant attributes for each
object are also determined. Figure 6
demonstrates the algorithm for ORDB script

reating a type of object, a new
table is created. Primary keys and foreign keys
are added as constraints for this script. Both key
constraints are split from the list in the logical
schema by identifying them as “P” and “F”

Amarasinghe

Fig. 4. The algorithm used for the generation of RDB Scripts

2.5.3 NoSQL Script

The algorithm for NoSQL script generation
considers the required NoSQL syntaxes and
apply them to the logical schema. Fig. 7. shows
the algorithm for the NoSQL script. Keywords
“db” and “insert” are used here for new table
creation. Entities are used as table names and
the attributes are used as column names of the
NoSQL table. Normalization algorithm is not
used for NoSQL scripts as well as ORDB scripts.

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

40

Fig. 4. The algorithm used for the generation of RDB Scripts

The algorithm for NoSQL script generation
considers the required NoSQL syntaxes and

. Fig. 7. shows
the algorithm for the NoSQL script. Keywords
“db” and “insert” are used here for new table
creation. Entities are used as table names and
the attributes are used as column names of the

table. Normalization algorithm is not
used for NoSQL scripts as well as ORDB scripts.

2.6 Primary Key Generation

In the proposed method, the primary key is
generated by using functional dependencies. We
need to define matrices to identify the primary
key. A primary key is a set of attributes that is
completely dependent on all other attributes.
Dependency matrix, dependency graph matrix,
path matrix and circular dependency matrix are
the matrices used to create the primary key
automatically. The circular dependency matrix

; Article no.AJRCOS.66504

In the proposed method, the primary key is
generated by using functional dependencies. We
need to define matrices to identify the primary

. A primary key is a set of attributes that is
completely dependent on all other attributes.
Dependency matrix, dependency graph matrix,
path matrix and circular dependency matrix are
the matrices used to create the primary key

dependency matrix

Amarasinghe

shows the primary key. For example, relation
Employee {number, name, dob, enroll, date,
address, works, supervisor} with functional
dependencies ({number, name -
address, works, supervisor}, {number
{address - works}, {name, address
{name, dob, supervisor – number, enroll, date,
address, works}, {name, dob, address
enroll, date} gives circular dependency matrix as
shown in Chart 1. For this example, {Number,
Name} is identified as a primary key
simple attributes are directly dependent on the

Fig. 5. The algorithm for normalization

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

41

shows the primary key. For example, relation
Employee {number, name, dob, enroll, date,
address, works, supervisor} with functional

- dob, date,
address, works, supervisor}, {number - enroll},

, {name, address - supervisor},
number, enroll, date,

address, works}, {name, dob, address–number,
enroll, date} gives circular dependency matrix as
shown in Chart 1. For this example, {Number,
Name} is identified as a primary key in which all
simple attributes are directly dependent on the

attribute set {Number, Name} or depend on the
determinant key which not a candidate key. For
{Name, DOB, Supervisor} and {Name, DOB,
Address} which are potential candidate keys,
have some dependencies of simple keys via
{Number, Name} which is a potential primary
key. For the attribute {DOB}, it depends on
{Name, DOB, Supervisor} via attribute set
{Number, Name}. For potential candidate keys
that have dependencies with another potential
candidate keys are ignored as primary keys.

Fig. 5. The algorithm for normalization

; Article no.AJRCOS.66504

attribute set {Number, Name} or depend on the
determinant key which not a candidate key. For
{Name, DOB, Supervisor} and {Name, DOB,
Address} which are potential candidate keys,

ncies of simple keys via
{Number, Name} which is a potential primary
key. For the attribute {DOB}, it depends on
{Name, DOB, Supervisor} via attribute set
{Number, Name}. For potential candidate keys
that have dependencies with another potential

keys are ignored as primary keys.

Amarasinghe

Fig. 6. The algorithm used for the generation of ORDB

2.7 Web Application

The proposed method was integrated into a web
application (see Fig. 8). where the user can enter
the scenario for the database and select the type
of script to be generated.

All the steps described in Subsections 2.1 to 2.8
are implemented in the web application. It

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

42

Fig. 6. The algorithm used for the generation of ORDB scripts

The proposed method was integrated into a web
where the user can enter

the scenario for the database and select the type

All the steps described in Subsections 2.1 to 2.8
are implemented in the web application. It

provides three functions to generate RDB, ORDB
and NoSQL scripts. According to the literature,
still, there is no system that has these
functionalities proposed in our method integrated
into a single system. Python scripts are
combined with PHP scripts to generate web
application. It provides extremely simple user
interfaces for the users to interact with the
system.

; Article no.AJRCOS.66504

te RDB, ORDB
and NoSQL scripts. According to the literature,
still, there is no system that has these
functionalities proposed in our method integrated
into a single system. Python scripts are
combined with PHP scripts to generate web

ides extremely simple user
interfaces for the users to interact with the

Amarasinghe

Fig. 7. The algorithm used for the generation of NoSQL

Chart. 1. Sample

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

43

Fig. 7. The algorithm used for the generation of NoSQL scripts

Chart. 1. Sample circular matrix for relation employee

; Article no.AJRCOS.66504

Amarasinghe

Fig. 8. Web Interface for the proposed model

3. RESULTS AND DISCUSSION

3.1 Experiments

To evaluate the proposed model, 10 different
scenarios from a database textbook [15] were
used which are standard, well-written and widely
referred to by the experts in database
technology. Table 1. gives the purpose, number
of entities, attributes and relationships of each
database. Each of these scenarios is provided
with an ER diagram as well. The ER diagrams
are used for validation purposes. The model was
validated and verified by using those scenario
descriptions by manually comparing them with
the outputs of each stage of the proposed
method with the aid of Test Cases which are
described in Section 3.1.1 below. Since the
scenario descriptions are standar
written descriptions.

For example, in Table 1, the scenario for the
university database taken from the database
textbook in [15] contains 8 sentences. It includes
6 entities and 34 attributes. These entities are
combined with 3 relationships. Similarly, the
details of the 9 other scenario descriptions are
given in Table 1.

3.1.1 Test cases

10 test cases were used to evaluate various
stages of the methodology. Two of the test cases
are given in Chart 2. which are used for the
evaluation of extracting entities and attributes. As
shown in Chart 2. for each test case user given
scenario was used and the expected and actual
outputs are compared. From the result field, it

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

44

Web Interface for the proposed model

SSION

To evaluate the proposed model, 10 different
scenarios from a database textbook [15] were

written and widely
referred to by the experts in database

gives the purpose, number
ationships of each

database. Each of these scenarios is provided
with an ER diagram as well. The ER diagrams
are used for validation purposes. The model was
validated and verified by using those scenario
descriptions by manually comparing them with

puts of each stage of the proposed
method with the aid of Test Cases which are
described in Section 3.1.1 below. Since the
scenario descriptions are standard and well-

For example, in Table 1, the scenario for the
taken from the database

textbook in [15] contains 8 sentences. It includes
6 entities and 34 attributes. These entities are
combined with 3 relationships. Similarly, the
details of the 9 other scenario descriptions are

10 test cases were used to evaluate various
stages of the methodology. Two of the test cases
are given in Chart 2. which are used for the
evaluation of extracting entities and attributes. As
shown in Chart 2. for each test case user given

and the expected and actual
outputs are compared. From the result field, it

gives whether each test case identified all
entities and attributes correctly or not.

3.2 Performance of the Key Element
Extraction

Table 2. illustrates the accuracy of extracti
key elements of database tables which are
entities, attributes and relationships. For each
scenario description, Table 2. presents the actual
number and the identified number of entities,
attributes and relationships by the proposed
model as (actual/identified). It can be seen from
Table 2. that for all database tables except for
the US house of a representative database, all
entities are identified correctly. When it comes to
the identification of attributes except for one
attribute each from 4 databases (Company 1,
Company 2, Course, US house of a
representative databases) all attributes are
identified correctly.

One issue noted is that some attributes are
identified twice (e.g., Company database 1).
Also, if the same attribute appears in two 2
entities, the system has missed the identification
of one of them. For example, the attribute “name”
is common for both department entity and
employee entity in Company database 2, but it is
identified only once. Further, except for one
relationship each from US house representative
and Museum databases, all relationships are
identified correctly.

3.3 Performance of the Logical Schema
and Script Generation

This section presents the performance of logical
schema and script generation steps of the

; Article no.AJRCOS.66504

gives whether each test case identified all
entities and attributes correctly or not.

Performance of the Key Element

Table 2. illustrates the accuracy of extracting the
key elements of database tables which are
entities, attributes and relationships. For each
scenario description, Table 2. presents the actual
number and the identified number of entities,
attributes and relationships by the proposed

/identified). It can be seen from
Table 2. that for all database tables except for
the US house of a representative database, all
entities are identified correctly. When it comes to
the identification of attributes except for one

abases (Company 1,
Company 2, Course, US house of a
representative databases) all attributes are

One issue noted is that some attributes are
identified twice (e.g., Company database 1).
Also, if the same attribute appears in two 2

tities, the system has missed the identification
of one of them. For example, the attribute “name”
is common for both department entity and
employee entity in Company database 2, but it is
identified only once. Further, except for one

m US house representative
and Museum databases, all relationships are

Performance of the Logical Schema

This section presents the performance of logical
schema and script generation steps of the

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.AJRCOS.66504

45

methodology. As explained in the methodology,
the three scripts are generated using the logical
schema. The logical schema is created based on
the XML file. Table 3. shows the accuracy of
automatic generation of logical schema, RDB
scripts, ORDB scripts and NoSQL scripts. For
each logical schema, manual cross-checking
was done by comparing the generated schema
line by line. To validate the database scripts,
table names, attributes (column names), primary
keys and foreign keys are manually cross-
validated. From Table 3. it can be seen that the
accuracy of generating the logical schema is

90% or less. The reason for this is that rarely
the foreign keys are not identified correctly from
the automated ER model because some of the
useful keywords are missed due to the
grammar checker. The accuracy of logical
schema depends on the number of foreign keys
and the number of primary keys. Another
reason for less accuracy is the fact that
cardinality ratios such as M:N or 1:M but for 1:1
not correctly identified. For instance, for the
university database, one foreign key is not
detected and because of that, it gives 85% of
accuracy.

Table 1. The details of the 10 scenario descriptions

Database Purpose of Database (Entities, attributes,

relationships)
University To store the information of a university student and

courses.
(6, 34, 3)

Company 1 To keep track of employees, departments and projects (3, 17, 3)
Company 2 To store the details of departments inside the company (4, 11, 2)
Course To store information about the courses offered in a

semester
(3, 12, 3)

Olympic To keep track of sports complexes and events (3, 8, 2)
Soap To store details of sales of the specific soap type (5, 14, 1)
US house of a
representative

To store the details of on the house of representatives. (4, 11, 3)

Museum To store the details of objects inside a museum. (11, 34, 6)
Library To record the operations of a library (4, 15, 6)
Airport To keep track of airplanes, owners, airport employees,

and pilots saved for this database.
(8, 21, 5)

Chart 2. Two of the test cases used to evaluate the identification of a) entities, b) attributes for
the given scenario

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.AJRCOS.66504

46

Table 2. Performance of the identification of key elements of the 10 scenario descriptions

Scenario (Database) Entities Attributes Relationships

 (actual/identified) (actual/identified) (actual/identified)

University 6/6 34/34 3/3
Company 1 3/3 18/17 3/3
Company 2 4/4 10/11 2/2
Course 3/3 11/12 3/3
Olympic 3/3 8/8 2/2
Soap 5/5 14/14 1/1
US house of a representative 3/4 10/11 2/3
Museum 11/11 34/34 5/6
Library 4/4 15/15 6/6
Airport 8/8 21/21 5/5

Table 3. Performance of Logical schema, RDB script, ORDB script and NoSQL scripts

Database Logical

Schema
RDB Script ORDB

Script
NoSQL Script

University 85% 90% 95% 95%
Company 1 90% 90% 95% 95%
Company 2 85% 85% 90% 90%
Course 80% 70% 75% 75%
Olympic 80% 75% 75% 70%
Soap 85% 90% 90% 90%
US house of a representative 75% 70% 70% 65%
Museum 80% 85% 85% 85%
Library 90% 85% 80% 80%
Airport 70% 85% 85% 90%
Mean Accuracy 82.0% 82.5% 84.0% 83.5%

The accuracy of the generation of RDB, ORDB
and NoSQL database scripts is calculated using
the table counts. RDB scripts depend on both
logical schema and the key elements. For the
first scenario, one table is not generated due to a
foreign key issue and therefore it gives 90% of
accuracy for the RDB script. Similarly, the
accuracies of the RDB scripts for other database
scenarios are slightly less than 90% for the same
reason. Overall, according to Table 3. the
accuracies of RDB scripts are less than ORDB
and NoSQL scripts since ORDB and NoSQL
scripts are generated mainly using the key
database elements only. ORDB and NoSQL
scripts give a better accuracy value because of
having almost 100% accuracy for key element
extractions as given in Table 1. According to the
results shown in Table 3. the mean accuracy
values are 82.5%, 84.0%, and 83.5% for RDB,
ORDB and NoSQL scripts, respectively. Also, the
mean accuracy for logical schema generation is
82.0%.

Since this study introduces a novel method, there
is no existing work to compare the results

covering the entire process. Extracting key
database elements and generating three types of
database scripts follows an entirely different
approach compared to related works
summarized in Section 1. Overall, the accuracies
of various stages of the method presented in
Table 2. and Table 3. are promising.

4. CONCLUSION

This study is focused on developing a novel
method for the automatic generation of database
scripts for a given scenario description from the
requirement specification of a software system.
The proposed method first extracts relevant
information to create an entity-relation model
from scenario descriptions using natural
language processing techniques and then uses a
few new algorithms to convert the entity-
relational model to the logical schema and finally
to a SQL database script. Another aim of this
study was to develop a web application
integrating all the algorithms introduced to
automate the database script generation
process. This web application was used to test

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.AJRCOS.66504

47

the method which supports three popular
database types, namely, relational (RDB), object-
relational (ORDB) and not only SQL (NoSQL).
Through an experiment conducted using 10
scenario descriptions related to 10 diverse
disciplines, it was verified that the proposed
method could generate database scripts of RDB,
ORDB and NoSQL databases with accuracies of
82.5%, 84.0% and 83.5%, respectively.

Overall, this method could help to overcome
some of the challenging steps of the database
design in practice. One of the major outcomes of
this work is the newly developed web application
that can be used for educational purposes.
Educators and learners can use this application
for teaching and learning the database
technology.

Therefore, the major contributions of this study
include the introduction of novel algorithms to
automate the entire process of converting a
scenario description of the requirement
specification to a database script of one of RDB,
ORDB and NoSQL types, and the development
of a new web-based tool that can be used to
educate and train students and software
engineers on the database technology.

One limitation of the proposed method is the
extraction of attributes having the same name
appearing in different entities that can be fixed
using advanced natural language processing
(NLP) techniques. The research work presented
here is focused only on scenario descriptions
provided in textual format, however the proposed
model can be extended to support scenario
descriptions given in spoken language format
too. Further, this method generates only the
entity-relational and class models and it can be
improved to automatically generate entity
relationship diagrams and class diagrams in the
future.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Anonymous. Database Designer for MYSQL.

A handy tool with intuitive interface that
allows you to build a clear and effective
database structure visually.
Available:http://www.microolap.com/products
/database/mysql-designer.

2. Dedhia R, Jain A, Deulkar K. Techniques to
automatically generate Entity Relationship
Diagram. International Journal of innovation
and advancement in computer science
IJIACS. 2015;4:10. ISSN: 2347-8616.

3. Xu S, Li Y, Lu S. ERDraw. An XML-based
ER-diagram Drawing and Translation Tool;
2003.

4. Btoush E, Hammad M. Generating ER
Diagrams from Requirement Specifications
Based On Natural Language Processing.
International Journal of Database Theory
and Application. 2015;8:61-70.
DOI: 10.14257/ijdta.2015.8.2.07.

5. Uma M, Sneha V, Sneha G, Bhuvana J,
Bharathi B. Formation of SQL from natural
language query using NLP. 2019
International Conference on Computational
Intelligence in Data Science (ICCIDS).
1996;1-5.
DOI: 10.1109/ICCIDS.2019.8862080.

6. Luisa M. NL-OOPS: From natural language
to object oriented requirements using the
natural language processing system LOLITA.
Natural Language Engineering. 2. 1996;161-
187.
DOI:10.1017/S1351324996001337.

7. Li K, Dewar RG, Pooley RJ. Object-oriented
analysis using natural language
processing. 2005;75-76.

8. More P, Phalnikar R. Generating UML
diagrams from natural language
specifications. International Journal of
Applied Information Systems. 2012;1:19-23.
DOI: 10.5120/ijais12-450222.

9. Herchi H, Abdessalem W. From user
requirements to UML class diagram; 2012
;arXiv preprint arXiv:1211.0713.

10. Smith JBL, Burgoyne JA, Fujinaga I, De
Roure D, Downie JS, 2011, October. Design
and creation of a large-scale database of
structural annotations. In ISMIR. 2011;11:
555-560.

11. Fokkema IF, Den Dunnen JT, Taschner PE,
2005. LOVD: easy creation of a
locus‐specific sequence variation database
using an “LSDB‐in‐a‐box” approach. Human
mutation, 2005;26(2):63-68.

12. Connors KA, Beasley A, Barron MG,
Belanger SE, Bonnell M, Brill JL, et al.
(2019). Creation of a curated aquatic
toxicology database: EnviroTox. Environ
mental Toxicology and Chemistry. 2019;
38(5):1062-1073.

13. Russell SJ, Norvig P. Artificial Intelligence, A
modern approach. 3rd ed; 1995.

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.AJRCOS.66504

48

14. Rich E, Knight K. Artificial Intelligence. 2nd
ed; 2009.

15. Elmasri R, Navathe SB. Fundamentals of
database system. 6

th
 ed; 2011.

© 2021 Amarasinghe and Nawarathna; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle4.com/review-history/66504

