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ABSTRACT 
 

Aims: Database creation is the most critical component of the design and implementation of any 
software application. Generally, the process of creating the database from the requirement 
specification of a software application is believed to be extremely hard. This study presents a 
method to automatically generate database scripts from a given scenario description of the 
requirement specification.  
Study Design: The method is developed based on a set of natural language processing (NLP) 
techniques and a few algorithms. Standard database scenario descriptions presented in popular 
textbooks on Database Design are used for the validation of the method.  
Place and Duration of Study: Department of Statistics and Computer Science, Faculty of 
Science, University of Peradeniya, Sri Lanka, Between December 2019 to December 2020. 
Methodology: The description of the problem scenario is processed using NLP operations such as 
tokenization, complex word handling, basic group handling, complex phrase handling, structure 
merging, and template construction to extract the necessary information required for the entity 
relational model. New algorithms are proposed to automatically convert the entity relational model 
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to the logical schema and finally to the database script. The system can generate scripts for 
relational databases (RDB), object relational databases (ORDB) and Not Only SQL (NoSQL) 
databases. The proposed method is integrated into a web application where the users can type the 
scenario in natural or free text. The user can select the type of database (i.e., one of RDB, ORDB, 
NoSQL) considered in their system and accordingly the application generates the SQL scripts. 
Results: The proposed method was evaluated using 10 scenario descriptions connected to 10 
different domains such as company, university, airport, etc. for all three types of databases. The 
method performed with impressive accuracies of 82.5%, 84.0% and 83.5% for RDB, ORDB and 
NoSQL scripts, respectively. 
Conclusion: This study is mainly focused on the automatic generation of SQL scripts from 
scenario descriptions of the requirement specification of a software system. Overall, the developed 
method helps to speed up the database development process. Further, the developed web 
application provides a learning environment for people who are novices in database technology.   

 
 
Keywords: Databases; requirement specification; scenario description; natural language processing; 

database script; logical schema. 
 

1. INTRODUCTION 
 
Database management systems (DBMS) is a 
collection of programs that enables users to 
create and maintain databases. DBMS is 
therefore a general-purpose software system that 
facilitates the processes of defining, constructing, 
manipulating, and sharing databases among 
various users and applications. Database 
technology is making a major impact on the 
growing use of computers and it is fair to say that 
databases play a critical role in almost all fields in 
modern digital society. A database may be 
created and maintained manually or the whole 
process can be automated. 
 
Generally, the requirements of a system are 
documented as a collection of scenarios. A 
scenario is a textual description of specific use 
cases of a system. End users can freely state 
their requirements through scenarios. When a 
system is being developed, a database that 
captures all the key aspects of the user 
scenarios should exist to store data effectively. 
Therefore, mapping of a user-written scenario to 
a database script directly helps to achieve the 
functional requirements of the system. It has 
always been a tedious task to follow the entire 
set of steps manually in creating a good 
database. Converting a scenario given in natural 
language into an SQL script would be extremely 
beneficial for the database designers. Further, it 
will help to minimize human errors involved with 
designing enterprise applications. Overall, the 
productivity of the system design can be 
increased by automating the database creation 
process. 
 

As a solution to the above-mentioned issue, a 
method is developed in this study to convert a 
statement of a scenario of the expected system 
written in natural language to a database script 
that can be executed to create the database.  
Natural language processing (NLP) is one of the 
main areas of computer science and artificial 
intelligence. NLP includes read, decipher, 
understand, and make sense of the languages 
that humans use naturally to interface with 
computers in both written and spoken contexts. 
In the proposed solution, first, the user must 
enter the description of the scenario in text 
format as the input. The description must be in 
the English language and the user can describe 
the scenario according to their understanding of 
the system. The solution supports three main 
database types, specifically, relational databases 
(RDBs), object-relational databases (ORDBs) 
and NoSQL. Therefore, the output will be an SQL 
script that depends on the database type 
selected by the user. This solution is 
implemented as a web application. One of the 
advantages of this web application is that it can 
be used as a tool for teaching and learning of the 
database creation process. 
 
Therefore, the objectives of this work are to 
propose a novel algorithm for the extraction of 
key elements and their relationships of a given 
scenario description to create the entity relational 
model, to develop algorithms to automate the 
conversion of entity relation model to a logical 
schema and then to SQL scripts and finally to 
develop a web application integrating all 
algorithms for automating the database script 
generation process. 
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According to the literature, studies in this area 
either aimed at developing methods to convert 
requirement specifications to entity-relationship 
(ER) diagrams or unified modeling language 
(UML) diagrams such as class diagrams. Some 
of the existing work falling under these two 
categories are summarized below. 
 
A tool called “Database designer for MySQL” that 
allows building effective and clear database 
structure visually is described in [1]. It is 
mentioned that this tool supports triggers, stored 
procedures, reverse engineering of MySQL 
databases. The tool is compatible with all types 
of MySQL databases such as MyISAM, ISAM, 
InnoDB, and BDB. R. Dedhia et al. proposed an 
algorithm to generate entity-relationship 
diagrams automatically in [2]. The proposed 
algorithm focuses on both syntactic analysis and 
semantic heuristic for extracting the major 
components such as entity, attribute, and the 
relation of an entity-relationship diagram. 
 
Also, in [3], an XML-based ER-diagram drawing 
and translation tool was proposed by Y. Li, S. Lu 
and S. Xu. The tool automatically generates a 
relational database schema by converting the ER 
diagram. Further, in [4], E. S. Btoush and M. M. 
Hammad proposed a method to generate ER 
diagrams from requirement specification based 
on natural language processing techniques. This 
approach provides an opening of using natural 
language documents as a source of knowledge 
for generating ER data models. One of the 
structural approaches is used to parse 
specification syntactically based on a predefined 
set of heuristics rules. M. Uma at el. in [5] 
attempted to develop a method to convert a 
database query given in natural language to SQL 
format using NLP techniques. 
 
When considering the work on automating 
object-oriented analysis and design process, L. 
Mich [6] proposed a system called NL-OOPS. It 
converts from natural language to object-oriented 
requirements using a system called LOLITA 
(Large-scale Object-based Language Interactor, 
translator and Analyzer). It analyses the user 
requirement provided in natural language and 
extracts only objects from the description. 
However, LOLITA cannot identify attributes and 
classes. A method for automating the object-
oriented Analysis (OOA) process using natural 
language processing techniques and linguistic 
theories was proposed by K. Li, R. G. Dewar and 
R. J. Pooley in [7]. They have proposed a 
pragmatic intermediate solution for the 

identification of classes through the development 
of a dialogue algorithm. This method includes a 
more comprehensive set of heuristics to 
automate the OOA process. 
 
P. More and R. Phalnikar designed a model to 
generate UML diagrams from natural language 
specifications [8]. This study facilitated the 
requirements analysis process and creates UML 
diagrams from textual specifications using 
natural language processing (NLP) and domain 
ontology techniques. In [9], a system is designed 
to convert user requirements to a UML class 
diagram by H. Herchi and W. B. Abdessalem. 
They investigated how NLP techniques and 
domain ontologies can be exploited to support 
the object-oriented analysis process. This system 
in [9], first, accepts user needs in natural 
language and then identifies the classes, their 
attributes and associations between them to 
include them in a structured XML file. 
 
Structural annotations for a large-scale database 
were designed by Jordan B. L. Smith et al. 
described in [10]. This work describes the design 
and creation of an unprecedentedly large 
database of over 2400 structural annotations of 
nearly 1400 musical recordings. Here structure 
refers to the partitioning of a piece of music into 
sections and the grouping together of similar or 
repeated sections. F.A.C. Fokkema et al. 
proposed a method to create a variation 
database using the "LSDB-in-a-Box" approach in 
[11]. They have developed the Leiden Open 
Variation Database (LOVD) software using the 
"LSDB-in-a-Box" idea for the easy creation and 
maintenance of a fully web-based gene 
sequence variation database. 
 
A tool called “EnviroTox” is developed to 
generate a curated aquatic toxicology database 
to support ecoTTC analysis and development 
described in [12]. For this creation of an ecoTTC 
tool, a large, diverse environmental data set was 
developed from multiple sources, with 
harmonization, characterization, and information 
quality assessment steps to ensure that the 
information could be effectively organized and 
mined. 
 
Overall, from the existing work outlined above, it 
can be observed that there is no existing system 
that can automatically generate RDB, ORDB and 
NoSQL scripts directly from the scenario 
descriptions of the requirement specification 
covering each step of the database creation 
process. Therefore, the major contribution of this 
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study is to propose a comprehensive solution to 
convert a given scenario description to a 
database script in one of RDB, ORDB or NoSQL 
database types. 
 

The remainder of this article is organized as 
follows. Section 2 presents the methodology of 
the proposed system. Results of the method 
evaluation are discussed in Section 3. Finally, 
Section 4 provides some concluding remarks.
 

2. METHODOLOGY 
 

The proposed script generation model is 
developed based on information extraction using 
natural language processing techniques and a 
few newly proposed algorithms.  
extraction is the process of identification of the 
occurrences of a particular class of 
objects/concepts and relationships among them 
of a given text [13,14]. This study attempts to 
extract the required information (i.e., entities, 
attributes and relationships) from scenario 
descriptions to create tables of the database. 
The main steps of the proposed method are 
 

 
Fig. 1. Overview of the Proposed Model
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The proposed script generation model is 
developed based on information extraction using 
natural language processing techniques and a 
few newly proposed algorithms.  Information 
extraction is the process of identification of the 
occurrences of a particular class of 
objects/concepts and relationships among them 

14]. This study attempts to 
extract the required information (i.e., entities, 

nd relationships) from scenario 
descriptions to create tables of the database. 
The main steps of the proposed method are 

shown in Fig. 1. The details of each step of the 
methodology are presented in the following 
subsections. 
 

2.1 Processing of the 
Description Using Natural Language 
Processing Techniques 

 
A database scenario description is a story or 
storyline of use cases of a software system 
usually written using a natural language
Examples for such scenarios can be found from 
the standard database textbooks such as [15]. 
The scenario descriptions available in textbooks 
are standard, well-written, and widely used for 
teaching and learning purposes. Therefore, the 
proposed method is developed based on 
standard scenario descriptions found in
textbooks. As shown in Fig. 1. first, the scenario 
description is extracted from the requirements 
specification of the system. The user can enter 
any type of scenario as shown in Fig. 2. and 
select the type of database among RDB, ORDB 
and NoSQL. 
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Fig. 2. A sample scenario description
 
As the first step, the grammar checking tool 
identifies the grammar errors and if there are no 
grammar errors, then the scenario 
go through several NLP operations as indicated 
in Fig. 1. 
 
During tokenization, sentences of the scenario 
are segmented into tokens, i.e., words, numbers, 
punctuations. Then, the complex word handling 
module handles complex words and they are 
recognized with a combination of lexical entries 
and finite-state grammar rules. For example, this 
step identifies “Co” or “Inc” or “Ltd” as 
“company”. In the basic group handling module, 
the system handles basic groups, meaning noun 
groups and verb groups. Prepositions and 
conjunctions are also considered. 
 
The main aim of the complex-phrase handling 
module is to combine the basic groups into 
complex phrases. Again, the aim of this step is to 
have finite-state rules and thus can be processed 
quickly and that results in unambiguous output 
phrases. Structure merging model merges 
structures that are obtained in the previous step. 
Template construction is based on eight general 
syntactic templates that cover most of the 
relationships among the words. The eight 
templates include a verb, noun preposition, verb 
preposition, infinitive, modifier, noun coordinate, 
verb coordinate and appositive. 
 
2.2 Key Database Elements Extraction
 
The system can identify which words can be 
attributes, entities and relationships 
processed scenario description is described in 
Section 2.1. To build a fully automated database 
script generation system, entities, attributes and 
relationships are identified for the given scenario 
by using a rule checker. The rule checker 
includes the following rules. Attributes are nouns 
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2.2 Key Database Elements Extraction 

can identify which words can be 
attributes, entities and relationships from the 
processed scenario description is described in 
Section 2.1. To build a fully automated database 
script generation system, entities, attributes and 
relationships are identified for the given scenario 

The rule checker 
Attributes are nouns 

mentioned along with their entity. If there are two 
nouns together in the scenario, the second noun 
is considered as an attribute. If there are any 
personal pronouns and nouns appearing 
together, then the noun is considered as an 
attribute. If there are any adjective or determiner 
and noun are occurring together, then again a 
noun can be considered as an attribute. Adverbs 
uniquely indicate the primary key of an entity. 
Multivalued attributes can be identified us
plural nouns. Derived attributes can be extracted 
using a popular attribute list. According to the 
user-given scenario, the system identifies entities 
using nouns and verbs. 
 

2.3 An XML Script to Represent the Key 
Elements 

 

An XML script is considered because XML is the 
intermediate language that can easily convert 
extracted key elements to entity-relational model 
through a web environment. To develop this, the 
python language and element tree API which has 
a tree structure are used. There are two secti
in the XML file, one for entities and their 
attributes, and the other one for entities and their 
relationship. Basically, this XML file contains the 
entity-relational (ER) model of the system. Next, 
it will be parsed to create the logical schema.
 

2.4 Generating the Logical Schema
 

In this step, the method maps the entity
(ER) model to the logical schema using the 
common ER to Relational mapping algorithm. As 
shown in Fig. 3. first, the cardinality details 
should be extracted from the preproc
scenario. If there is a one-to-one relationship, the 
primary key of “one-side” goes to the other “one
side” as a foreign key as well as if there are one
to-many relationships between two entities, “one
side” primary key goes to the “many
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foreign key. Further, if the cardinality is many
many then, a new table is created from two 
tables including the primary keys of both tables.
 

2.5 Generating Database Scripts
 

To create three types of scripts, the schema file 
should contain all the necessary details in a well
defined order. The syntaxes for each script are 
defined first and then relevant entities, attributes 
and relationships are extracted from the schema 
file to put them in the correct place as tables.
 

2.5.1 Relational databases (RDB) scripts
 

In the schema refinement phase, the logical 
schema is converted to the normalized schema 
using 1NF, 2NF, and 3NF. INF and 2NF can be 
automated according to the given requirement 
specification. But 3NF depends on the functional 
dependencies between each attribute of the 
entity. For the RDB scripts, the output script is 
based on the normalized schema. Fig. 4. 
illustrates the system algorithm used to generate 
RDB scripts step by step. 
 

2.5.1.1 Normalization algorithm for RDB script
 

We denote the set of functional dependencies by 
F that are specified on relation schema R. It is 
 

 
Fig. 3. The algorithm used for the generation of the logical schema

Amarasinghe and Nawarathna; AJRCOS, 7(3): 34-48, 2021; Article no.

 
39 

 

oreign key. Further, if the cardinality is many-to-
many then, a new table is created from two 
tables including the primary keys of both tables. 

2.5 Generating Database Scripts 

To create three types of scripts, the schema file 
necessary details in a well-

defined order. The syntaxes for each script are 
defined first and then relevant entities, attributes 
and relationships are extracted from the schema 
file to put them in the correct place as tables. 

(RDB) scripts 

In the schema refinement phase, the logical 
schema is converted to the normalized schema 
using 1NF, 2NF, and 3NF. INF and 2NF can be 
automated according to the given requirement 
specification. But 3NF depends on the functional 

etween each attribute of the 
entity. For the RDB scripts, the output script is 
based on the normalized schema. Fig. 4. 
illustrates the system algorithm used to generate 

Normalization algorithm for RDB script 

e set of functional dependencies by 
F that are specified on relation schema R. It is 

considered to identify candidate keys by 
calculating the closure of attribute sets. Even it is 
not likely to find all the candidate keys, it is 
possible to identify a fine set of candidate keys 
that is needed to do the normalization up to a 
better extent. The normalization algorithm and 
the 3NF algorithm is shown in figure 5. In the 
normalization algorithm, it goes to the 3NF 
algorithm if there is only one attribute for the
primary key. If not, then it checks the 
dependencies and creates tables for each 
dependency. In the 3NF algorithm, determined 
non-prime attributes and remove the depending 
attributes from the original table are added to a 
new table. 
 

2.5.2 Object-Relational Database 
scripts 

 

To create ORDB scripts, entities are identified as 
objects and all the relevant attributes for each 
object are also determined. Figure 6 
demonstrates the algorithm for ORDB script 
generation. After creating a type of object, a new 
table is created. Primary keys and foreign keys 
are added as constraints for this script. Both key 
constraints are split from the list in the logical 
schema by identifying them as “P” and “F” 
respectively.
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Fig. 4. The algorithm used for the generation of RDB Scripts

2.5.3 NoSQL Script 
 
The algorithm for NoSQL script generation 
considers the required NoSQL syntaxes and 
apply them to the logical schema.  Fig. 7. shows 
the algorithm for the NoSQL script. Keywords 
“db” and “insert” are used here for new table 
creation. Entities are used as table names and 
the attributes are used as column names of the 
NoSQL table. Normalization algorithm is not 
used for NoSQL scripts as well as ORDB scripts.
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2.6 Primary Key Generation 
 
In the proposed method, the primary key is 
generated by using functional dependencies. We 
need to define matrices to identify the primary 
key. A primary key is a set of attributes that is 
completely dependent on all other attributes. 
Dependency matrix, dependency graph matrix, 
path matrix and circular dependency matrix are 
the matrices used to create the primary key 
automatically. The circular dependency matrix 
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shows the primary key. For example, relation 
Employee {number, name, dob, enroll, date, 
address, works, supervisor} with functional 
dependencies ({number, name -
address, works, supervisor}, {number 
{address - works}, {name, address 
{name, dob, supervisor – number, enroll, date, 
address, works}, {name, dob, address
enroll, date} gives circular dependency matrix as 
shown in Chart 1. For this example, {Number, 
Name} is identified as a primary key 
simple attributes are directly dependent on the 
 

 
Fig. 5. The algorithm for normalization
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attribute set {Number, Name} or depend on the 
determinant key which not a candidate key. For 
{Name, DOB, Supervisor} and {Name, DOB, 
Address} which are potential candidate keys, 
have some dependencies of simple keys via 
{Number, Name} which is a potential primary 
key. For the attribute {DOB}, it depends on 
{Name, DOB, Supervisor} via attribute set 
{Number, Name}. For potential candidate keys 
that have dependencies with another potential 
candidate keys are ignored as primary keys.
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Fig. 6. The algorithm used for the generation of ORDB 

 

2.7 Web Application 
 
The proposed method was integrated into a web 
application (see Fig. 8). where the user can enter 
the scenario for the database and select the type 
of script to be generated. 
 
All the steps described in Subsections 2.1 to 2.8 
are implemented in the web application. It 
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Fig. 6. The algorithm used for the generation of ORDB scripts 

The proposed method was integrated into a web 
where the user can enter 

the scenario for the database and select the type 

All the steps described in Subsections 2.1 to 2.8 
are implemented in the web application. It 

provides three functions to generate RDB, ORDB 
and NoSQL scripts.  According to the literature, 
still, there is no system that has these 
functionalities proposed in our method integrated 
into a single system. Python scripts are 
combined with PHP scripts to generate web 
application. It provides extremely simple user 
interfaces for the users to interact with the 
system. 
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Fig. 7. The algorithm used for the generation of NoSQL scripts 
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Fig. 8. Web Interface for the proposed model

 
3. RESULTS AND DISCUSSION
 

3.1 Experiments 
 
To evaluate the proposed model, 10 different 
scenarios from a database textbook [15] were 
used which are standard, well-written and widely 
referred to by the experts in database 
technology. Table 1. gives the purpose, number 
of entities, attributes and relationships of each 
database. Each of these scenarios is provided 
with an ER diagram as well. The ER diagrams 
are used for validation purposes. The model was 
validated and verified by using those scenario 
descriptions by manually comparing them with 
the outputs of each stage of the proposed 
method with the aid of Test Cases which are 
described in Section 3.1.1 below. Since the 
scenario descriptions are standar
written descriptions. 
 
For example, in Table 1, the scenario for the 
university database taken from the database 
textbook in [15] contains 8 sentences. It includes 
6 entities and 34 attributes. These entities are 
combined with 3 relationships. Similarly, the 
details of the 9 other scenario descriptions are 
given in Table 1. 
 
3.1.1 Test cases 
 
10 test cases were used to evaluate various 
stages of the methodology. Two of the test cases 
are given in Chart 2. which are used for the 
evaluation of extracting entities and attributes. As 
shown in Chart 2. for each test case user given 
scenario was used and the expected and actual 
outputs are compared. From the result field, it 
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are given in Chart 2. which are used for the 
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shown in Chart 2. for each test case user given 

and the expected and actual 
outputs are compared. From the result field, it 

gives whether each test case identified all 
entities and attributes correctly or not.
 

3.2 Performance of the Key Element 
Extraction 

 

Table 2. illustrates the accuracy of extracti
key elements of database tables which are 
entities, attributes and relationships. For each 
scenario description, Table 2. presents the actual 
number and the identified number of entities, 
attributes and relationships by the proposed 
model as (actual/identified). It can be seen from 
Table 2. that for all database tables except for 
the US house of a representative database, all 
entities are identified correctly.  When it comes to 
the identification of attributes except for one 
attribute each from 4 databases (Company 1, 
Company 2, Course, US house of a 
representative databases) all attributes are 
identified correctly. 
 

One issue noted is that some attributes are 
identified twice (e.g., Company database 1). 
Also, if the same attribute appears in two 2 
entities, the system has missed the identification 
of one of them. For example, the attribute “name” 
is common for both department entity and 
employee entity in Company database 2, but it is 
identified only once. Further, except for one 
relationship each from US house representative 
and Museum databases, all relationships are 
identified correctly. 
 

3.3 Performance of the Logical Schema 
and Script Generation 

 

This section presents the performance of logical 
schema and script generation steps of the 
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methodology. As explained in the methodology, 
the three scripts are generated using the logical 
schema. The logical schema is created based on 
the XML file. Table 3. shows the accuracy of 
automatic generation of logical schema, RDB 
scripts, ORDB scripts and NoSQL scripts. For 
each logical schema, manual cross-checking 
was done by comparing the generated schema 
line by line.  To validate the database scripts, 
table names, attributes (column names), primary 
keys and foreign keys are manually cross-
validated. From Table 3. it can be seen that the 
accuracy of generating the logical schema is 

90% or less. The reason for this is that rarely      
the foreign keys are not identified correctly from 
the automated ER model because some of the 
useful keywords are missed due to the        
grammar checker. The accuracy of logical 
schema depends on the number of foreign keys 
and the number of primary keys. Another         
reason for less accuracy is the fact that 
cardinality ratios such as M:N or 1:M but for 1:1 
not correctly identified. For instance, for the 
university database, one foreign key is not 
detected and because of that, it gives 85% of 
accuracy. 

 
Table 1.  The details of the 10 scenario descriptions 

 
Database Purpose of Database (Entities, attributes, 

relationships) 
University To store the information of a university student and 

courses. 
(6, 34, 3) 

Company 1 To keep track of employees, departments and projects (3, 17, 3) 
Company 2 To store the details of departments inside the company (4, 11, 2) 
Course To store information about the courses offered in a 

semester 
(3, 12, 3) 

Olympic To keep track of sports complexes and events (3, 8, 2) 
Soap To store details of sales of the specific soap type (5, 14, 1) 
US house of a 
representative 

To store the details of on the house of representatives. (4, 11, 3) 

Museum To store the details of objects inside a museum. (11, 34, 6) 
Library To record the operations of a library (4, 15, 6) 
Airport To keep track of airplanes, owners, airport employees, 

and pilots saved for this database. 
(8, 21, 5) 

 

 
 

Chart 2. Two of the test cases used to evaluate the identification of a) entities, b) attributes for 
the given scenario 
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Table 2.  Performance of the identification of key elements of the 10 scenario descriptions 
 

Scenario (Database) Entities Attributes Relationships 

 (actual/identified) (actual/identified) (actual/identified) 

University 6/6 34/34 3/3 
Company 1 3/3 18/17 3/3 
Company 2 4/4 10/11 2/2 
Course 3/3 11/12 3/3 
Olympic 3/3 8/8 2/2 
Soap 5/5 14/14 1/1 
US house of a representative 3/4 10/11 2/3 
Museum 11/11 34/34 5/6 
Library 4/4 15/15 6/6 
Airport 8/8 21/21 5/5 

 
Table 3.  Performance of Logical schema, RDB script, ORDB script and NoSQL scripts 

 
Database Logical 

Schema 
RDB Script ORDB 

Script 
NoSQL Script 

University 85% 90% 95% 95% 
Company 1 90% 90% 95% 95% 
Company 2 85% 85% 90% 90% 
Course 80% 70% 75% 75% 
Olympic 80% 75% 75% 70% 
Soap 85% 90% 90% 90% 
US house of a representative 75% 70% 70% 65% 
Museum 80% 85% 85% 85% 
Library 90% 85% 80% 80% 
Airport 70% 85% 85% 90% 
Mean Accuracy 82.0% 82.5% 84.0% 83.5% 

 
The accuracy of the generation of RDB, ORDB 
and NoSQL database scripts is calculated using 
the table counts. RDB scripts depend on both 
logical schema and the key elements. For the 
first scenario, one table is not generated due to a 
foreign key issue and therefore it gives 90% of 
accuracy for the RDB script. Similarly, the 
accuracies of the RDB scripts for other database 
scenarios are slightly less than 90% for the same 
reason. Overall, according to Table 3. the 
accuracies of RDB scripts are less than ORDB 
and NoSQL scripts since ORDB and NoSQL 
scripts are generated mainly using the key 
database elements only. ORDB and NoSQL 
scripts give a better accuracy value because of 
having almost 100% accuracy for key element 
extractions as given in Table 1. According to the 
results shown in Table 3. the mean accuracy 
values are 82.5%, 84.0%, and 83.5% for RDB, 
ORDB and NoSQL scripts, respectively. Also, the 
mean accuracy for logical schema generation is 
82.0%. 
 
Since this study introduces a novel method, there 
is no existing work to compare the results 

covering the entire process.  Extracting key 
database elements and generating three types of 
database scripts follows an entirely different 
approach compared to related works 
summarized in Section 1. Overall, the accuracies 
of various stages of the method presented in 
Table 2. and Table 3. are promising. 
 

4. CONCLUSION 
 
This study is focused on developing a novel 
method for the automatic generation of database 
scripts for a given scenario description from the 
requirement specification of a software system. 
The proposed method first extracts relevant 
information to create an entity-relation model 
from scenario descriptions using natural 
language processing techniques and then uses a 
few new algorithms to convert the entity-
relational model to the logical schema and finally 
to a SQL database script. Another aim of this 
study was to develop a web application 
integrating all the algorithms introduced to 
automate the database script generation 
process. This web application was used to test 
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the method which supports three popular 
database types, namely, relational (RDB), object-
relational (ORDB) and not only SQL (NoSQL). 
Through an experiment conducted using 10 
scenario descriptions related to 10 diverse 
disciplines, it was verified that the proposed 
method could generate database scripts of RDB, 
ORDB and NoSQL databases with accuracies of 
82.5%, 84.0% and 83.5%, respectively. 
 
Overall, this method could help to overcome 
some of the challenging steps of the database 
design in practice. One of the major outcomes of 
this work is the newly developed web application 
that can be used for educational purposes. 
Educators and learners can use this application 
for teaching and learning the database 
technology. 
 
Therefore, the major contributions of this study 
include the introduction of novel algorithms to 
automate the entire process of converting a 
scenario description of the requirement 
specification to a database script of one of RDB, 
ORDB and NoSQL types, and the development 
of a new web-based tool that can be used to 
educate and train students and software 
engineers on the database technology. 
 
One limitation of the proposed method is the 
extraction of attributes having the same name 
appearing in different entities that can be fixed 
using advanced natural language processing 
(NLP) techniques. The research work presented 
here is focused only on scenario descriptions 
provided in textual format, however the proposed 
model can be extended to support scenario 
descriptions given in spoken language format 
too.  Further, this method generates only the 
entity-relational and class models and it can be 
improved to automatically generate entity 
relationship diagrams and class diagrams in the 
future. 
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