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ABSTRACT 
 

This paper presents a review of flow network concepts, including definition of some graph-theoretic 
basics and a discussion of network flow properties. It also provides an overview of some crucial 
algorithms used to solve the maximum-flow problem such as the Ford and Fulkerson 
algorithm (FFA), supplemented with alternative solutions, together with the essential terminology 
for this algorithm. Moreover, this paper explains the max-flow min-cut theorem in detail, analyzes 
the concepts behind it, and provides some examples and their solutions to demonstrate this 
theorem. As a bonus, it expounds the reduction and transformation techniques used in a 
capacitated network. In addition, this paper reviews one of the popular techniques for analyzing 
capacitated networks, which is the “decomposition technique”. This technique is centered on 
conditioning a complicated network on the possible states of a keystone element ��  or on the 
possible combinations of states of many keystone elements. Some applications of capacitated 
network problems are addressed based on each type of problem being discussed. 
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1. INTRODUCTION 
 
A capacitated network (also called a flow 
network) in graph theory is a directed graph 
where each directed edge has a specified 
capacity, which is the maximum value of a 
specific entity, commodity, or ‘through’ quantity 
that can flow through the edge. For example, we 
can state that the capacity of a wire is 30 
amperes if the maximum electric current that can 
flow through the wire (that the wire can 
withstand) is 30 amperes. Moreover, each edge 
in the capacitated network supports a flow that 
moves through the edges without breaching 
capacity constraints from the source node to the 
sink node. Notably, a directed graph in 
Operations Research (OR) is called a network, 
which has nodes named vertices. The arcs 
connecting these vertices are called edges or 
branches. Understandably, a flow should adhere 
to the constraint that the inflow should be equal 
to the outflow at any vertex. The source and sink 
nodes, which have only outgoing flow and 
incoming flow, respectively, are not restricted by 
this constraint. This constraint, called “the law of 
flow conservation”, is similar to Kirchhoff’s 
Current Law when an electric current is the 
subject of the flow. Capacitated networks have 
many applications when modelling real-world 
problems. For instance, the commodity flowing in 
a capacitated network might be the traffic in a 
computer network, the liquid flowing through 
pipes, the current in an electric circuit, the 
information passing through communication 
networks, or anything similar that moves through 
a network of vertices. 
 
The maximum-flow problem seeks a solution, 
where we can compute the highest flow from a 
source to a sink within the maximum capacity 
limits of the network branches. Notably, an 
effective algorithm like that of Ford-Fulkerson 
can solve this problem easily since it is proven 
correct and tested for various capacitated 
networks. Moreover, we can adapt certain 
techniques that apply particular maximum-flow 
algorithms (such as those based on the reduction 
and transformation rules or the decomposition 
technique) so as to cope (at least partially) with 
the increase in complexity for larger networks.  
 
The rest of this paper is arranged as follows. A 
review of flow network concepts is presented in 

Section 2, which details network properties, and 
the problem definition, while viewing the 
maximum flow aspects. Section 2 also provides 
an overview of some crucial algorithms used to 
solve the maximum-flow problem, in addition to 
some useful notation. Section 3 presents the 
Ford and Fulkerson method or the Ford and 
Fulkerson algorithm (FFA), supplemented with 
alternative solutions, together with the essential 
terminology for this algorithm. Additional 
examples to explain the algorithm are also 
featured in this section. Section 4 explains the 
max-flow min-cut theorem in detail, analyzes the 
concepts behind it, and provides some examples 
and their solutions to demonstrate this theorem. 
Section 5 explains the reduction and 
transformation techniques used in a capacitated 
network. Moreover, Section 6 extends this work 
by presenting one of the popular techniques for 
analyzing capacitated networks, which is the 
“decomposition technique”. This technique is 
centered on conditioning a complicated network 
on the possible states of a keystone element �� 
or on the possible combinations of states of 
many keystone elements. Subsequently, Section 
7 highlights some applications of the flow 
network problem. Finally, Section 8 concludes 
the paper. 
 
2. FLOW-CAPACITATED NETWORKS 
 
The section introduces flow networks, including 
definition of some graph-theoretic basics, a 
discussion of network flow properties, and a 
detailed definition of the maximum-flow problem. 
Besides, some useful notation is clarified in this 
section. 
 

2.1 Definition of Flow Networks and 
Flows  

 
A flow network [1,2,3,4] � = (�,�), is a directed 
graph, where �  is a set of vertices and � is a set 

of directed edges, where each edge (�, �) is 
characterized by the ordered set of the two 
nodes �  and �  it connects. Without loss of 

generality we assume that (�, �)  denotes at 
most one edge extending between the two nodes 
� and �, because if there are several such edges 
then they can be combined into one. Each edge 

(�, �)∈  � has a nonnegative function ���, ��≥

0 , called the capacity function. If (�, �) ∉  �  , 
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then we can add (�, �) to �  provided we set 
�(�,�)= 0.  Self-loops (edges connecting a 
vertex to itself) are disallowed in the graph, which 
means that the graph is a simple one. If we 
isolate two specific vertices, a source �  and a 

sink � , then the four-tuple (�, �, �, �) is called 
a flow network [1,2,3]. Now presume that each 
node falls on some path when the network is 
traversed from the source node to the sink node. 
This means that the flow network involves at 
least a path � → � → � for each node � ∈ � . 
Accordingly, the network is assumed to be 
connected and because each node other than 
the source has at least one edge incident on 
it  |�|≥ |�|− 1  ; as can be seen in the                
examples of the flow networks in Figs.                        
2 and 3. 
 

2.1.1 Flows  
 

There are many ideas for a flow function that 
might be used to describe the behavior of a flow 
network [2,3,5]. In fact, the net flow between any 
two vertices is conveniently modeled by such a 
flow function. One of the important examples of a 
useful flow function is derived via what is called a 
pseudo-flow algorithm, which is used to resolve 
the maximum flow and minimum cut problems 
[2,3,5]. 
 

A pseudo-flow in �  [6-8] satisfies the properties 
stated below for all vertices � and � with the real-
valued function :� × � →  ℝ  :  
 

 Capacity constraint: For all �,� ∈ �, we 
require 0 ≤ �(�,�)≤ �(�,�).  This 
constraint indicates that flow through a 
specific branch (extending between nodes 
� and �) should not exceed the flow limits 
for this branch and must be non-negative. 

 Skew symmetry: This is the only 
requirement that involves encoding the 
total units of flow between each pair of 
vertices � and� . This is due to the fact that 
f (u, v) = −f (v, u), i.e., the net flow from 
node �  to node �  is the opposite of the 
total flow from node � to node �. 

 

It is necessary to verify the net flow into a 
specific vertex � for a particular pseudo-flow � in 

a flow graph. An additional function �� : � →

 ℝ  is needed to represent the net flow entering 

node � , and hence it is stated by �� (�) =

 ∑ � (�, �)�∈ � . Accordingly, the vertex u is 

considered active if �� (�)>  0 , deficient if 

��(�)< 0 or conservative if �� (�)=  0. 

The aforementioned explanations naturally bring 
us to mention two crucial definitions related to 
that of a pseudo-flow: 

 
A pre-flow is a pseudo-flow in which all � ∈  � \
{�}, satisfies the extra property: 

 
 Non-deficient flow: The total inflow in any 

vertex �  other than the source is non-
negative. The exception of the source is 
necessary, since, by definition, it is a node 
that "produces" flow. Mathematically 
speaking, a non-deficient flow 

means: �� (�) ≥  0 for all � ∈  � \{�}. 

 
For all ∈  � \{�, �} , a feasible flow, or only a                 
flow is the pseudo-flow that fulfills the extra 
property. 

 
 Flow conservation [2,3,4]: For all 

� ∈ � − {�,�}, we require  

 

� �(�,�)= � �(�,�)

�∈�

 .

�∈�

 

 
The conservation property states that, for a                    
node other than the source or the sink,                 
the total outflow from a vertex should be 
equivalent to the total inflow into that                      
vertex. Roughly speaking, “what flows in must 
come out” for a node other than the source                 
node or the sink node. Whenever                    

(�,�)∉  �, nothing flows from �  to  � , and 
�(�,�)= 0. 

 
The flow from vertex � to � is the non-negative 
quantity �(�,�), where the value |f| of a flow f is 
defined as  

 

|�|= � �(�,�)− � �(�,�),

�∈��∈�

 

 
Notably, this is the net outflow from the source 
node minus the inflow towards it, where the |.| 
notation indicates flow value and not cardinality 
or absolute value. Usually, a flow network cannot 
have any edges entering the source, and the flow 
entering the source, defined by ∑ �(�,�)= 0.�∈�  
Nevertheless, it is essential to introduce the 
inflow concept at the source at this stage (though 
we set it identically to zero later) since this 
conforms to our brief introduction to                  
residual networks, which comes later in the 
paper.  
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2.2 Intuitive Analysis of Flow Networks 
 
The method of transferring the flow units 
between vertices is a critical issue in the       
analysis of a flow network. Notably, 
distinguishing various edges between two 
vertices is not warranted here. We recall that we 

assumed, without loss of generality, that (�, �) 
denotes at most one edge extending between 
the two nodes �  and � . We now explain this 
further. 
 

 For any pair of vertices �  and � , let us 
tentatively assume that we have two edges 
in parallel from node �  to node �  whose 
branch capacities are 4 and 6 units, 
respectively. Instead of using these two 
edges, we can replace them with an 
equivalent single edge between 
� and � with a capacity of 10 units. It is not 
necessary to know how these two edges 
might share the actual flow that can be 
transferred, but the important thing is to 
know that we can, as a maximum, transfer 
10 units from � to �. 

 

 Again, given a pair of different vertices 
� and �, assume we have a flow of 7 units 
from the direction � to �, and an additional 
opposite flow of 2 units from the 
direction �  to  � . These correspond to 5 
units of net flow from � to �, which equates 
to a negative 5-unit flow in the opposite 
direction � to �. Therefore, the sign is used 
to indicate the actual direction measured 
with respect to the �  to �  direction as a 
reference direction. 

 

Thus, the capacity function �: � ×  � →  ℝ ∞ 
(which avoids having several edges originating 
and terminating at the same set of two vertices) 
is adequate for successful flow analysis. 
Correspondingly, imposing the skew 
symmetry property on flow functions is justified 
since there is a guarantee that the flow between 
two nodes is uniquely coded by a distinct non-
negative numerical value (to show magnitude), 
together with a sign (for direction designation 
w.r.t. a reference direction). Once you know the 
flow between �  and � , then through skew 
symmetry you have known the flow 
between � and �. Usually, the immediate impact 
of network solutions are not intuitive, but they 
become more realistic during the actual analysis 
of the flow network. The capacity constraint 
ensures that a flow on any edge in the flow graph 
will not exceed the capacity of that edge. 

2.3 Networks with Multiple Sources and 
Sinks 

 

Many sources and many sinks can exist in any 
maximum flow problem, which rules out the 
necessity of existence of only one source and 
one sink [2]. For example, the telecommunication 
wireless network may actually have multiple base 
stations {��,��,… ,�� }, each servicing particular 
locations in a certain best way and numerous 
users {��,��,… ,��} with varying expectations of 
the (network traffic) communication rates, as 
shown in Fig. 1(a). 
 

It is possible to replace multiple flows involving 
multiple sources and sinks by a single basic 
maximum flow problem. Fig. 1 shows the 
conversion of multiple sinks and sources in part 
(a) to an ordinary single sink and an ordinary 
single source, respectively, in part (b). To 
achieve this purpose, we added a super-source � 
to the flow-graph. We also added a directed arc 
(�,��) whose branch capacity is �(�,��)→ ∞ that 
connects the super-source �  with each of the 
initial multiple sources �� for each � = 1,2,...,�. 
Moreover, we added a new super-sink t too to 
the flow graph, together with a directed arc (t�,t) 
with capacity c(t�,t)→ ∞ that connects each of 
the initial multiple sinks �� for each i= 1,2,… ,n to 
the super-sink � . Actually, there are noticeable 
similarities between Fig. 1(a) and Fig. 1(b). The 
only source � releases the sufficient flow required 
to satisfy the multiple sources �� , while the one 
sink � consumes the flow delivered to the several 
sinks ��. We observe that the infinite value for the 
capacities �(�,��)  and c(t�,t)  might not be 
necessary as it suffices to secure only the 
following finite values �(�,��)= ∑ �(��,�)(��,�)∈�

, 

and c(t�,t) = ∑ �(�,t�)(�,��)∈�
. 

 

2.4 Example 
 
Fig. 2 shows the source depicted as �, the sink 
identified as t, and four additional vertices for a 
flow network. The flow and capacity are indicated 

via an ordinary-fraction 
�

�
 notation, where f and c 

denote the flow and capacity, respectively. The 
way this network conserves flow, upholds both 
capacity and skew symmetry is evident in Fig. 2. 
For instance, the total amount of flow 
from � to � is 10, which can be easily seen from 
the fact that the total outgoing flow from � is 10, 
which is also the incoming flow to � . Notably, 
every flow is accounted for in all the vertices, 
since the flowing commodity is neither generated 
nor consumed at any of these vertices. 



                                                (a)                                              

Fig. 1. Conversion of a multiple
telecommunication wireless network into a problem with a single source and a single sink. The 

figure (a) above shows how to transform a multiple
problem for the telecommunication wireless network into a single
problem. It has a five-source � =

Diagram (b) shows the corresponding network flow for a single
significant changes made in going from (a) to (b) include the addition of a super
an edge with an unlimited (or sufficient) capacity from 
addition of a super-sink � and an edge with an unlimited (or sufficient) capacity from each of 

 

 
Fig. 2. Illustration of flow and capacity 

in a flow network 

 
Fig 3 shows the residual network for the given 
flow network. Notice how a positive residual 
capacity ( �− � ) appears on some branches 
where the original capacity is zero, for instance, 
for the branch (�,�). This flow is not a
flow. There is available capacity along the paths
(�,�,�,�),(�,�,�,�,�) ��� (�,�,�,�
are labelled as augmenting paths. The residual 
capacity of the first path is 

�(�,�),�(�,�)− �(�,�),�(�,�)− �(

���(10− 6,6 − 4,4 − 2)= ���(4,2
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                                              (b) 

 
Conversion of a multiple-source, multiple-sink maximum-flow problem for the 

telecommunication wireless network into a problem with a single source and a single sink. The 
figure (a) above shows how to transform a multiple-source, multiple-sink maximum
problem for the telecommunication wireless network into a single-source and a single

= {��,��,��,��,��} flow network with three sinks �
Diagram (b) shows the corresponding network flow for a single-source and a single
significant changes made in going from (a) to (b) include the addition of a super-
an edge with an unlimited (or sufficient) capacity from � to each of the multiple sources

and an edge with an unlimited (or sufficient) capacity from each of 
the multiple sinks to � 

 

 

Fig. 2. Illustration of flow and capacity 
 

Fig. 3. The flow network in Fig. 2 redrawn to 
show the residual capacities

Fig 3 shows the residual network for the given 
flow network. Notice how a positive residual 

) appears on some branches 
where the original capacity is zero, for instance, 

. This flow is not a maximum 
. There is available capacity along the paths 

�,�,�),  which 
are labelled as augmenting paths. The residual 

�����(�,�)−

(�,�)�=
( 2,2)= 2.  

Notice that as long as there exists some path 
with a positive residual capacity, the flow will n
be maximum. The residual capacity for some 
path is the minimum residual capacity of all 
edges in that path. 
 

Finding the maximum flow [9] is the simplest and 
most popular problem using flow networks. The 
maximum flow provides the largest possible total 
flow from the source to the sink in a given 
network. Understandably, the maximum flow 
algorithm can solve many other problems. 
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Notice that as long as there exists some path 
with a positive residual capacity, the flow will not 
be maximum. The residual capacity for some 
path is the minimum residual capacity of all 
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maximum flow provides the largest possible total 
flow from the source to the sink in a given 
network. Understandably, the maximum flow 
algorithm can solve many other problems.       
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This is particularly true if you model those 
problems so as to be pertaining to flow      
networks, such as the bipartite                         
matching problem, the assignment problem and 
the transportation problem. We can effectively 
solve such problems by relabeling them as                    
max-flow ones. The max-flow min-cut theorem 
states that finding a maximal network flow is 
equivalent to finding a cut of minimum capacity 
that separates the source and the sink, where a 
cut is the division of nodes such that the                   
source is in one division and the sink is in 
another. 

 
Some of the well-known Maximum Flow 
Algorithms include the following:  

 
 The Ford-Fulkerson algorithm, which 

was published in 1956 by L.R. Ford Jr. and 
D.R. Fulkerson [10]. (Refer to the next 
section for more details about this 
algorithm). 

 The Dinic’s algorithm or Dinitz's 
algorithm, which is a strongly 
polynomial algorithm for computing 
the maximum flow in a flow network. This 
algorithm was conceived in 1970 by A. 
Dinitz [11]. The algorithm runs in �(���) 
time; where �  represents the number of 
vertices or nodes of the capacitated 
network and �  represents the number of 
edges or arcs.  

 The Edmonds–Karp algorithm, which is 
an implementation of the Ford – Fulkerson 
method for computing the maximum flow in 
a flow network in �(� ��) time. It was first 
published by Jack Edmonds and Richard 
Karp in 1972 [12]. 

 The James Orlin algorithm, which was 
published in 2013 [13]. The algorithm runs 
in �(��) time. 

 
A multi-commodity flow problem                         
consists of many distinct “commodities” that flow 
from the source(s) to the sink(s). For                    
instance, there might be many goods that are 
produced at many factories, and are to be 
delivered to many given customers across 
the same transportation network. A minimum 
cost flow problem has multiple branches, where 
each branch (�,�)  has its cost per unit of                   
flow of �(�,�), so that the cost of transmitting the 
flow �(�,�) through the branch is �(�,�).�(�,�). 
The aim is to transport particular value                          
at minimum total cost from the source to the      
sink. 

A circulation problem is another aspect of a flow 
network, which has a lower bound �(�,�)  for flow 
on the branch (�,�) , as well as an upper 
bound �(�,�) on it. Every branch also has a 
certain cost per unit of flow. In this problem, the 
sink is linked back to the source and the flow 
conservation rule holds for all vertices. 
Therefore, it is possible to control the total flow 
with the lower and upper bounds �(�,�)  and 
�(�,�) . The flow therefore circulates over the 
network, a fact which accounts for the name of 
this type of problems. 
 

A graph with gains is a generalized network in 
which each link has a gain, which is a non-zero 
real number. In such a graph, if a link has a 
gain �, and an amount � flows into the edge at 
its tail, then an amount �� flows out at the head 
of this edge. 
 

Another aspect of flow network is the source 
localization problem, where the pertinent 
algorithm anticipates localities of excessive flow 
through knowledge of flow distribution across a 
moderately monitored graph. Such an algorithm 
is useful for tracking mobile phone users and 
identifying sources of disease outbreaks since it 
can be implemented in arbitrary networks in 
cubic time or in tree networks in linear time. 
 

3. THE FORD AND FULKERSON 
ALGORITHM  

 

3.1 Definition  
 

This section presents the Ford and Fulkerson 
method (also called the Ford and Fulkerson 
algorithm (FFA)), which is used in a flow network 
to solve the maximum flow problem [2,3,14,4,15]. 

 
The approach pertaining to finding the 
augmented paths in a residual network is 
referred to simply as a “method” rather than an 
“algorithm” because this approach is not fully 
specified [16]. It is a broad approach that 
encompasses multiple implementations with 
differing execution times [2]. Ford–Fulkerson is a 
combination of names of the publishers of this 
algorithm, L.R. Ford Jr. and D.R. Fulkerson [10], 
who published it in 1956. The Edmonds–Karp 
algorithm is a common terminology used to 
define the Ford–Fulkerson method 
implementation. The method proposed by Ford 
and Fulkerson is dependent on three crucial 
concepts, which makes it a superior method 
among other flow algorithms and problems. 
These concepts include cuts, augmented paths 
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and residual networks. Typically, these concepts 
or ideas are necessary and crucial aspects of the 
max-flow min-cut theorem. This section ends 
with detailed analysis of the Ford and Fulkerson 
method and some essential examples [2,3,14]. 
 

The Ford-Fulkerson method repeatedly 
increases the value of the flow. It begins with 
f(u,v)= 0  for all u,v ∈ V , giving a zero-initial 
value of the flow. At each step or iteration, the 
value of the flow in �  is increased by finding an 
“augmenting path” in an associated “residual 
network” ��  . A path is called an augmenting 

path if there is some available capacity on all 
edges belonging to this path. Once we know the 
branches of an augmenting path in �� , we can 

easily identify specific branches in �  for which 
we can update the flow so as to increase the flow 
value. Although each step of the Ford-Fulkerson 
method increases the flow value, we should 
notice that the flow on any specific branch of �  
can increase or decrease. In fact, decreasing the 
flow on some branches might be necessary in 
order to enable the algorithm to transmit more 
flow from the source node to the sink node. We 
iteratively augment the flow till the algorithm 
terminates when the residual network has no 
more augmenting paths. The max-flow min-cut 
theorem shows that, upon termination, this 
procedure produces a maximum flow [2,3,14]. In 
other words, the concept behind the algorithm is 
as follows: as long as there is a path from the 
source (start node) to the sink (end node), with 
available capacity on all edges in the path, the 
source-to-sink flow might be augmented by 
utilizing the available capacity along this 
augmenting path. Then we find another 
augmenting path, and so on till no path can be 
found with available capacity on all its edges. 
 

3.2 Some Useful Terminology 
 

In order to implement and analyze the Ford-
Fulkerson method, we need to introduce several 
additional concepts such as:  
 

 Source/Sink: The source/sink vertex is 
such that all its edges are outward/inward 
ones, and none of them is inward/outward. 

 Residual networks: Given a flow network 
�  and a flow , the residual network �� 

consists of links with capacities that 
represent how we can change the flow on 
links of the flow network � . A link (edge) of 
the flow network �  can permit an amount 

of additional flow equal to the link’s 
capacity minus the actual flow �  on that 
link. If that value is positive, we place that 
link into the residual network ��  with a 

“residual capacity” of ��(�,�)= �(�,�)−

�(�,�). The only links of the flow network �  
that are in the residual network ��  are 

those that can permit more flow. Those 
links (�,�)  whose flow equals their 
capacity have ��(�,�)= 0, and they are 

not in the residual network �� . Moreover, 

we can define the residual graph as a 
graph which indicates additional possible 
flow. If there is a path from the source to 
the sink in the residual network, then there 
is a possibility to add more flow along that 
path that equals the minimum                  
residual capacity on the edges of this    
path.  

 Minimal cut: Also known as the 
“bottleneck capacity,” which decides the 
maximum possible flow from � to � through 
an augmented path. In other words, the 
bottleneck capacity of the path is the 
minimum capacity of any edge on the path.  

 Augmenting paths: An augmenting path 
� is a basic link from node � to node � in a 
residual network, provided there is a flow 
network � = (�,�) and a flow �. Possibly, 
we might increase the link (�,�) flow of an 
augmenting path by the amount  ��(�,�), 

following the definition of a residual 
network. That is possible with no violation 
of branch capacity on whichever of (�,�) 
and (�,�) is in the original flow network � . 
Actually, augmenting paths is achievable 
by considering any of the two kinds of 
edges: (1) Non-full forward edges, and (2) 
Non-empty backward edges. 

 Augmenting path theorem: A flow � is a 
maximum flow if and only if no augmenting 
paths exist. 

 

3.3 Algorithm 
 

Consider �(�,�) as a flow network, and for 
every branch from �  to  � , let �(�,�)  be the 
capacity and �(�,�) be the flow. Therefore, it 
possible to determine the maximum flow 
between the sink node �  and source-node � . 
Table 1 shows the prerequisites that must be 
fulfilled after each step in the algorithm. Each of 
these prerequisites does not change after every 
stage of the algorithm: 

 
 



Table 1. Prerequisites that must be fulfilled after each step in the algorithm
 
Capacity constraints ∀(�,�)∈

Skew symmetry ∀(�,�)∈

Flow conservation ∀� ∈ �:�

Value (�) � �(�

(�,�)∈�

 
Table 1 shows that every round in the algorithm 
results in a legal flow within the network. 

Therefore, the residual network ���

defined as a network with a capacity of 
��(�,� )= �(�,�)− �(�,�)  and a zero flow.

Notably, it is possible that flow from 
permitted in the residual network, but prohibited 
in the initial network. This happens when 
�(�,�)> 0 ��� �(�,�)= 0  for then 

�(�,�)− �(�,�)= −�(�,�)= �(�,�
 

3.4 Entire Algorithm 
 
The following steps describe the Ford
algorithm used to solve maximum flow problems:
 
Start 
 
Inputs: Given is a network � = (�
capacity �, a source node �, and a sink node 
Output: Compute a flow �  from 
maximum value 
 

1. �(�,�)← 0 for all edges (�,�
initial flow as zero]. 

2. While there is a path � (to be denoted as 
an augmenting path) from � to 

that ��(�,�)> 0 for all edges 

 

Fig. 4. A flow network for which the 
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Prerequisites that must be fulfilled after each step in the algorithm

) � ∶�(�,�)≤ �(�,�) Edge Capacity defines the 
bounds for maximum 
along the path. 

) � ∶�(�,�)= − �(�,�) Flow from � to �
negative of flow in the 
reverse direction. 

� ≠ � ��� � ≠ � → � �(�,� )= 0

� ∈�

 Unless the node is a source 
(producer) or a sink 
(consumer), the net flow is 
zero. 

(�,�)= � �(�,�)

(�,�)∈�

 Exiting flow at � 
entering �.  

that every round in the algorithm 
results in a legal flow within the network. 

��,��� can be 

defined as a network with a capacity of 
and a zero flow. 

Notably, it is possible that flow from �  to �  be 
permitted in the residual network, but prohibited 
in the initial network. This happens when 

for then ��(�,� )=

( �)> 0. 

The following steps describe the Ford-Fulkerson 
algorithm used to solve maximum flow problems: 

�,�) with flow 
, and a sink node � 

from �  to �  of 

( �) . [Start with 

(to be denoted as 
to � in ��, such 

for all edges (�,�)∈ �: 

a) Find ��(�)= min���(�,�):(�,

b) For each edge (�,�)∈ � 
 

i) �(�,�)← �(�,�)+ ��(�) (Send flow along 

the path)  
ii) �(�,�)← �(�,� )− ��(�)  (The flow might 

be “returned” later)  
 

 “ ← " denotes assignment. For instance, 
“largest ←  item” means that the 
value of largest changes to the value of 
item. 

 “return” terminates the algo
outputs the following value. 

 
End  

 
Note that � will never reach � whenever no more 
paths exist in the residual network as shown in 
step 2. Assuming � represents the set of nodes 
reachable by � in the residual network, then the 
original network’s total capacity of edges 
beginning from �  is equivalent to the net flow 
found from � to �. It also denotes the upper limit 
for all potential flows. Therefore, the final flow is 
maximum. Further details on Max
Min-cut theorem are reported in the next 
section.  

 

 

Fig. 4. A flow network for which the Ford-Fulkerson does not terminate
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Prerequisites that must be fulfilled after each step in the algorithm 

Edge Capacity defines the 
bounds for maximum flow 

 
� equals the 

negative of flow in the 
reverse direction.  
Unless the node is a source 
(producer) or a sink 
(consumer), the net flow is 

 equals flow 

( ,�)∈ �� 

(Send flow along 

(The flow might 

denotes assignment. For instance, 
item” means that the                    

value of largest changes to the value of 

“return” terminates the algorithm and 
 

whenever no more 
paths exist in the residual network as shown in 

represents the set of nodes 
in the residual network, then the 

original network’s total capacity of edges 
is equivalent to the net flow 

. It also denotes the upper limit 
for all potential flows. Therefore, the final flow is 

s on Max-flow                    
cut theorem are reported in the next               

ulkerson does not terminate 



 

Augmenting 
path 

Bottleneck capacity

 Initial flow network 

S,A,D,T min�c�(S,A),c�(A,

= min�c(S,A)− f(

fA,D, cD,T−fD,T  

= min( 10− 0,8

S,C,D,T min�c�(S,C),c�
= min�c(S,C)− f(

fC, D, cD,T−fD,T=2

S,C,D,A,B,T min (c�(S,C),c�( C
c�( A,B),c�(B,T) )

S,A,D,B,T min (c�(S,A),c�( A
c�( B,T)) = 2  

S,C,D,B,T Final flow network:
min (c�(S,C),c�( C
c�( B,T)) = 3  

 Max. Flow = (8+2+4+2+3) = 19

Alsalami and Rushdi; AJRCOS, 7(3): 1-33, 2021; Article no.

 
9 
 

Table 2. Example 1 

capacity Resulting flow network 

Initial flow network  

( ,D),c�(D,T)�  

(S,A),c(A,D)−

− 0,10− 0)= 8  

) ( C,D),c�(D,T)� 

(S,C),c(C,D)−

=2   

(C,D),c�(D,A),  
))= 4  

(A,D),c�(D,B),  

Final flow network: 
(C,D),c�(D,B),  

Max. Flow = (8+2+4+2+3) = 19  
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Path Capacity 
 Initial flow network  

A, B, C, D min�c�(A,B),c�(B,C),c

= min�c(A,B)− f(A,B

fC,D  

= min(1000− 0,1 − 0

A, C, B, D min�c�(A,C),c�(C,B),c

= min�c(A,C)− f(A,C

fB,D   

= min(1000− 0,0 − (

After 1998, more steps… 
 Final flow network 

 

If the network �(�,�) consists of many 
and many sinks, then it is worked out as follows: 
Assume that � = {� |� �� � ����}
{�|� �� � ������}. Add a new source 
edge ( �∗,�) from  �∗  to every node 

with capacity c(s∗,s )= d
∑ c(s,u)(�,�)∈� )Similarly, add a another sink 

with an edge (�,�∗) originating from each node 

� ∈ � to �∗, with capacity �(�,�∗)= �
∑ �(�,�)(�,�)∈� ). Finally, use the Ford

algorithm. Similarly, replace a node 
capacity constraint ��  with two nodes 
connected by an edge  ( ���,
possesses a capacity �(���,����)=
apply the Ford–Fulkerson algorithm.
 

3.5 The Algorithm Complexity 
 

Adding more augmenting paths to an already 
established network flow has a limit, where no 
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Table 3. Example 2 

Resulting flow network

) c�(C,D)�  

( B),c(B,C)− f(B,C),c(C,D)−

0,1000− 0)= 1  

) c�(B,D)�  

( C),c(C,B)− f(C,B)− c(B,D)−

(− 1),1000− 0)= 1  

many sources 
out as follows: 
}  and � =

Add a new source �∗  with an 
to every node � ∈ �,                    

) d��where d� =

Similarly, add a another sink �∗ 

originating from each node 

�� ��ℎ��� �� =

. Finally, use the Ford- Fulkerson’s 

algorithm. Similarly, replace a node � if it has a 
nodes ���,���� , 
,����),  which 

)= ��. After this, 
Fulkerson algorithm. 

3.5 The Algorithm Complexity  

Adding more augmenting paths to an already 
established network flow has a limit, where no 

more augmenting paths are available in the 
network. Nevertheless, there is no guarant
limit may be achieved; therefore, the correct 
results are achievable when the algorithm 
terminates. Issues regarding the termination of 
this algorithm will come later in this paper. In the 
case that the algorithm runs forever, the flow 
could not even converge towards the maximum 
flow. However, this situation only happens with 
irrational flow values. When the capacities are 
integers, the runtime of Ford–
bounded by �(��) where �  is the number of 
branches in the network and � is the m
flow in the network. This is because each 
augmenting path can be found in 
it increases the flow by an integer amount of at 
least 1, with the upper bound of f. 

 
The Edmonds–Karp algorithm is another variant 
of the Ford–Fulkerson’ algorithm, which executes 
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flow network 

 

 

 

 

more augmenting paths are available in the 
network. Nevertheless, there is no guarantee this 
limit may be achieved; therefore, the correct 
results are achievable when the algorithm 
terminates. Issues regarding the termination of 
this algorithm will come later in this paper. In the 
case that the algorithm runs forever, the flow 

en converge towards the maximum 
flow. However, this situation only happens with 
irrational flow values. When the capacities are 

–Fulkerson is 
is the number of 

is the maximum 
flow in the network. This is because each 

 �(�) time and 
it increases the flow by an integer amount of at 

 

Karp algorithm is another variant 
Fulkerson’ algorithm, which executes 



in �(���) regardless of the maximum flow value, 
and guarantees termination. 
 

3.6 Examples 
 

3.6.1 Example 1 
 

This example illustrates the steps of 
Fulkerson algorithm used to solve 
 

 
Augmenting 
path 

Bottleneck Capacity

 Initial flow network 

A,B,D,Z min�c�(A,B),c�(B,

= min�c(A,B)− f(

fB, D, cD, Z−fD, Z  

= min( 9 − 0,4

A,C,E,Z min�c�(A,C),c�(C,

= min�c(A,C)− f(

fC, E, cE, Z−fE, Z=5

A,C,Z min�c�(A,C),c�(C,

= min�c(A,C)− f(

fC,Z=3   

A,B,E,Z Final flow network

min�c�(A,B),c�(B,

= 1  

 Max. Flow = (4+ 5+ 3+ 1) = 13
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regardless of the maximum flow value, 

This example illustrates the steps of the Ford- 
Fulkerson algorithm used to solve the maximum 

flow problem with the source depicted as 
the sink identified as �  , and 
additional vertices for the flow network. The flow 
and capacity are indicated via an 

ordinary-fraction  
�

�
  notation, where 

and �  denote the flow and capacity,
respectively. 

Table 4. Example 3 

Bottleneck Capacity Resulting Flow Network 

Initial flow network  

( ,D),c�( D,Z)�  

(A,B),c(B,D)−

 

4 − 0,5 − 0)= 4  

( E),c�( E,Z)�  

(A,C),c(C,E)−

=5   

( Z)�  

(A,C),c(C,Z)−

Final flow network 
( ,E),c�( E,Z)�  

Max. Flow = (4+ 5+ 3+ 1) = 13  

 
 
 
 

; Article no.AJRCOS.66089 
 
 

flow problem with the source depicted as � ,               
, and with four               

flow network. The flow 
and capacity are indicated via an                          

notation, where �                       

denote the flow and capacity,                      
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 Table 5. Relation between augmenting paths and residual capacities for the network in Fig. 4 
 
Step Augmenting path Sent flow Residual capacities 

�� �� �� 
0   r� = 1 r 1 
1 {s,v�,v�,t } 1 r� r� 0 
2 p� r� r� 0 r� 
3 p� r� r� r� 0 
4 p� r� 0 r� r� 
5 p� r� r� r� 0 

 
3.6.2 Example 2 
 

This example illustrates the algorithm's worst 
behavior. At each step, only a flow of 1 is sent 
through the flow-network. By contrast, only two 
steps will be needed when we use breadth-first-
search. 
 
3.6.3 Example 3 
 
This example shows the steps of the Ford- 
Fulkerson algorithm with the source depicted as 
� , the sink identified as �  , and with four 
additional vertices for the flow network. 

 
3.7 The Non-terminating Case  
 
Understandably, it is widely accepted that the 
Ford-Fulkerson algorithm does not need to 
terminate for so as to find the maximum flow, 
specifically, when the arc capacities take 
irrational values.  Although all non-terminating 
 
instances converge to a limit flow, this limit flow 
does not necessarily imply the maximum flow of 
the network. Therefore, it is possible to exceed 
the limit flow and restart the algorithm, which 
justifies the classification of this method as a 
transfinite algorithm. Based on transfinite 
runtime-time analysis of the Ford-Fulkerson 
algorithm by Backman & Huynh [17], the worst-

case execution time is � �(|�|)  using ordinal 
numbers. Similarly, Backman & Huynh [17] show 
it is viable to model an Euclidean algorithm via 
Ford-Fulkerson on an auxiliary network. They 
determined that running the above example on a 
pair of incommensurable numbers could yield a 
robust non-terminating example.  
 

Another non-terminating example is given below 
[18]. This example considers the flow network 
that is indicated on Fig. 4. It has a source s, a 
sink t, and the edge capacities e�,e� and e� , 

respectively with values 1,r=
√���

�
and 1, while 

the capacity of each of the other edges is an 

arbitrary integer M ≥ 2.  The constant r  is 
selected carefully so that r� = 1 − r (r�� = 1 + r). 
Table 5 defines how we apply augmenting paths: 
 

p� = {s,v�,v�,v�,v�,t },p� = {s,v�,v�,v�,t } and p�
= {s,v�,v�,v�,t }. 

 

For some  � ∈ � , the residual capacities for 
edges ��,�� ��� �� take the values ��,���� ��� 0, 
respectively, after each of step 1 and step 5.This 
implies that the residual capacities of these 
edges will take similar format regardless of 
whether we augment paths ��,�� ��� �� 
infinitely. The net flow of the network at step 5 
takes the value 1 + 2(�� + ��). The total flow 
converges towards. 

 

1 + 2� �� = 1 + 2�/(1 − �)= 1 + 2�/�� = 1 + 2���
�

��� 

= 1 + 2(1 + �)= 3 + 2� 
 
If we use the augmenting paths repeatedly. 
Nevertheless, it results in flow value of 2� + 1, if 
we direct �  units of flow along ���� ,1 unit of flow 
along ������ , and �  units of flow along ���� . 
Consequently, the algorithm runs infinitely with 
no convergence at the maximum flow [18]. 

 
4. THE MAX-FLOW MIN-CUT THEOREM  
 
4.1 Definitions and statements  
 
The max-flow min-cut theorem holds when 
maximum flow between the source � and the sink 
�  is equate to the total capacity of the links 
(edges) in a minimum cut [2,3,5,19,4,9]. The 
theorem is considered a unique instance of 
duality theorem for linear optimization, which 
might be applied to develop the Kőnig’s theorem 
and Menger's theorem [19]. In other words, The 
Ford-Fulkerson method iteratively augments the 
flow along the augmenting paths until it reaches 
a maximum value of the flow [10]. Therefore, the 
following questions are necessary: When do we 
actually get the maximum flow in a flow network? 
In addition, how do we know when to terminate 
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the algorithm? To answer such questions, the 
max-flow min-cut theorem expresses that a flow 
is maximum if its residual network has no 
augmenting path. Actually, the theorem has two 
significant parts: the maximum flow through a 
flow network, and the minimum capacity of a cut 
of the flow network. To express the theorem, 
each of these parts should be defined first.  

 
Let N = (V,E) be a directed flow network, where 
�  represents the set of nodes (vertices) and � 
the set of links (edges). Let s∈ V  and t∈ V  be 
the source and the sink of N , respectively. A link 
(edge) (u,v)  is characterized by a mapping 
c∶ E → ℝ �  indicated by c��  or c(u,v)  where 
u,v ∈ V. It indicates the maximum value of flow 
that can pass through this link.  
 

4.2 Analyzing the Algorithm: Flows and 
Cuts 

 

The next objective is to illustrate that the Ford-
Fulkerson Algorithm returns flow that is possibly 
the maximum value in any flow in � .  
 
Flows: The function f:E → ℝ �  represents a flow 
mapping f��  or f(u,v), subject to the following two 
restrictions: 
 

1. Capacity Constraint: Given any link (u,v) 
in E,f�� ≤ c��. 

2. Flow Conservation: The equality below 
holds given any node � other than �  (the 
source) and � (the sink): 

 

� ���
{�:(�,�)∈�}

=  � ���
{� :(�,� )∈�}

.  

 

Flow is typically a representation of 
transportation of a commodity or fluid in the 
direction of each link through a network. The flow 
through the link cannot exceed its maximum limit, 
which is called the capacity constraint. In 
addition, the conservation constraint holds, which 
states that amount of flow through each node 
(other than the source and sink nodes) must 
equal the amount leaving it. 
 

The definition of the magnitude of flow through 
node � is shown below: 
 

|�|= � ���
{�:(�,�)∈�}

=  � ���
{�:(�,�)∈�}

 

 

Where the node � is the source node and � is the 
sink node. Based on the fluid or commodity 
comparison, it denotes the volume of fluid or 
quantity of commodity that enters the network at 

the source, and then leaves at the sink. Note that 
the same amount of flow entering at the source 
must leave at the sink to uphold the conservation 
rule. For any given network, the maximum flow 
problem seeks to achieve the maximum flow 
[2,3]. 
 

4.2.1 Maximum flow problem 
 

Maximize | � | , which aims to achieve the highest 

possible flow from � to �. 
 
Cuts: The second part of the max-flow min-cut 
theorem refers to another side of the network: 
which is a group of cuts. For instance, the s-t cut 
� = (�,�)  in a flow network � = (�,�)  is a 
partition of �  into � and � = � − � such that � ∈ � 
and � ∈ �. In other words, an s-t cut represents 
partitioning of network vertices into two disjoint 
parts: one part including the source node, with 
the other containing the sink node. The cut 
set ��  of a cut � constitutes the set of links that 
joins the source part �  of the cut to its sink        
part �:  
 

�� ≔ {(�,�)∈ � ∶� ∈ �,� ∈ � }= (� × �)∩ � 
 
Therefore, if we remove all the edges in the cut 
set of �, then we cannot have a possible flow, 
since no link exists to establish a connection 
from the source part � of the cut to its sink part �. 
If � is a flow, then the net flow �(�,�) across the 
cut (�,�) is expressed as. 

 
�(�,�)= � � �(�,�)

�∈��∈�
− � � �(�,�)

�∈��∈�
 

 
The sum of capacities of its links (edges) 
represents the capacity of the corresponding s-t 
cut, 
 

�(�,�)= ∑ ���(�,�)∈�� = ∑ ������(�,�)∈� ,  

 
where ���= 1 �� � ∈ � ��� �∈ �, 0 otherwise.  

 
Alternatively, we could state that the capacity of 
the cut (�,�) equals the following: 
 

�(�,�)=  � � �(�,�).
�∈��∈�

 

 
Usually, there are various cuts in the network, so 
that it becomes inherently complex to find the 
cuts with smaller capacities. Notably, a cut with 
the smallest cut capacity all over a network is 
called a minimum cut [2,3]. Such a minimum cut 
might not be unique. 
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4.2.2 Minimum s-t cut problem 
 

Minimize �(�, �), that is, determine � and � such 
that the capacity of the S-T cut is minimal. 
 

For the sake of simplicity and clarity,                            
let us elaborate the difference between flow and 
capacity of a cut. In the case of capacity, we 
count only the capacities of branches                  
passing from � to , while disregarding branches 
going in the opposite direction. In the case of 
flow, it is the flow from �  to �  minus the                     
flow in the opposite direction (i.e. from � to ) [2]. 
 
Fig. 5 shows the cut ({�,�,�},{�,�,�})  in a 
certain flow network. Its total flow across the cut 
is �(�,�)+ �(�,�)− �(�,�)= 12+ 11− 0 = 23, 
while the capacity is: �(�,�)+ �(�,�)= 12+
14 = 26. 
 
The lemma below shows that the total flow 
across any cut is uniform for any given flow, 
which is the same as value of the flow |�|. 
 

Lemma: Assume that a flow �  goes through a 
flow network, where �  is the source and (�,�) 
represents some cut in � . Then, the total flow 
across (�,�) is given by:�(�,�)=  |�|. 
 

The important max-flow min-cut theorem, 
stipulates that the maximum flow value and the 
minimum cut capacity are equivalent.  
 

4.3 Main Theorem 
 
Notably, this theorem shows that there is a link 
between the capacity of a minimum cut and the 
maximum flow through a network. In other words, 
a maximum flow s-t is equal to the smallest s-
t cut capacity. In fact, if �  is a flow in a flow 
network � = (�,�) with source � and sink �, then 
the following conditions are equivalent [2]:  
 

1. � is a maximum flow in � . 
2. The residual network ��  contains no 

augmenting paths. 
3.  |�|= �(�,�) for some cut (�,�) of �. 

 

4.4 Linear Program Formulation  
 
The max-flow problem and the min-cut problem 
can be expressed as two primal-dual linear 
programs, as expressed mathematically in Table 
6.  
 
In a straightforward manner, the max-flow linear 
program can be obtained from the primal column 

of Table 6. Likewise, the dual linear program is 
obtained by applying the algorithm explained in 
the dual column of Table 6. The resulting linear 
programs need some clarifications. To 
understand the variables in the min-cut linear 
program consider: 
 

d�� = �
1,if u ∈ S and v ∈ T (the edge uv is in the cut)

0 ,otherwise
�  

 

z� = �
1,if u ∈ S

0,otherwise
�  

 
Overall, the aim of this minimization entails 
summing of the capacities of all edges 
(branches) that are contained in the cut. 
These variables represent a valid cut due to the 
defined constraints: 
 
 The constraints ��� − �� + �� ≥ 0 

(equivalent to ��� ≥ �� − ��) warrants that 
the edge ( �,�)  is located in the cut 
(��� ≥ 1) , for every non-terminal nodes 
�,�, only when �  is present in �  and �  is 
present in �. 

 The constraints ��� + �� ≥ 1  (equal to 
��� ≥ 1 − ��) warrants that, if �  is in � , 
then the edge (�,�) is located in the cut 
(i.e. � is present in � by default). 

 The constraints ��� − �� ≥ 0 (equivalent to 
��� ≥ ��) guarantee that, if � is in �, then 
the edge ( �,� ) is located in the cut 
because � is present in � by default. 

 
Notably, there is no guarantee that a specific 
edge must be present in a cut since this is a 
minimization problem. The only guarantee is that 
each edge present in a cut is taken into 
consideration in the summation in the objective 
function. Therefore, the duality theorem in linear 
programming follows from the max-flow min-cut 
theorem of equality. It states that an optimal 
solution �∗ exists for every primal program that 
has an optimal solution �∗, where the resulting 
optimal values from both solutions are equal. 
 

4.5 Examples 
 
4.5.1 Example 1 
 

To demonstrate the aforementioned concepts, 
consider the simple flow network of Fig. 6. 
Assume that the capacities of the edges are as 
shown in Fig. 6, and that it is required to find the 
maximum flow from node A to node D. First, we 
need to define a cut. Generally, a cut is any 
collection of edges, which totally separates A 



from D. Therefore, in this example there are four 
possible cuts: {AB and AC}; {BD and CD}; {AB, 
BC and CD}; or {BD, AC, and BC}. The value of 
a cut is the sum of the capacities of its e
and the Min Cut Theorem simply says that the 
value of the minimum cut is exactly equal to the 
maximum flow. Therefore, for Fig. 6, it can be 
noticed that there is a single minimum cut, which 
is that composed of edges BD, AC, and BC with 
a value of 6. The corresponding maximum flow is 

 
Fig. 5. A cut (�,�) for a specific flow network, where 
in � are green, and the vertices in in 

Table 6. The LP of maximum flow and its dual (minimum cut)

 Max-flow (Primal)
variables f�� ∀(u,v)∈ E [a variable per edge]

Objectives Maximize ∑�:(�,

[max total flow from source]
Constraints Subject to 

 
f�� ≤ c�� ∀(u,v)

� f�� − � f��
��

[every edge and non
a constraint] 

Sign constraints f�� ≥ 0 ∀(u,v)∈
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from D. Therefore, in this example there are four 
possible cuts: {AB and AC}; {BD and CD}; {AB, 
BC and CD}; or {BD, AC, and BC}. The value of 
a cut is the sum of the capacities of its edges, 
and the Min Cut Theorem simply says that the 
value of the minimum cut is exactly equal to the 
maximum flow. Therefore, for Fig. 6, it can be 
noticed that there is a single minimum cut, which 
is that composed of edges BD, AC, and BC with 

The corresponding maximum flow is 

shown in Fig. 7. It can be observed                           
that each edge of the minimum cut is saturated 
(i.e., used to full capacity) as would                             
naturally be necessary. By contrast, since th
minimum cut is unique, none of the branches not 
belonging to it is saturated. It is                    
intuitively clear that the minimum cut definitely 
gives an upper bound on the maximum flow, but 
the fact that it is also a lower bound is not nearly 
as evident. 

 

for a specific flow network, where � = {�,�,�} and � = {�,�,�}. 
are green, and the vertices in in � are blue. The net flow across (�,�) is �(�,

the capacity is �(�,�)= �� 
 

Table 6. The LP of maximum flow and its dual (minimum cut) 

 
flow (Primal) Min-cut (Dual) 

[a variable per edge] ��� ∀(�,�)∈
[a variable per edge] 
�� ∀ � ∈ �\{�,�} a variable per non
terminal node]  

f��,�)∈�  

[max total flow from source] 

Minimize ∑ c��d��(�,�)∈�

[min total capacity of arcs in cut]

)∈ E 

�� = 0 v ∈ V\{s,t} 

[every edge and non-terminal node have 

Subject to 
��� − �� + �� ≥ 0 ∀(�,�
�,� ≠ �  
d�� + z� ≥ 1 ∀(s,v)∈ E
d�� − z� ≥ 0 ∀(u,t)∈ E 
[a constraint per edge] 

∈ E  d�� ≥ 0 ∀(u,v)∈ E  
z� ∈ ℝ  ∀v ∈ V\
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shown in Fig. 7. It can be observed                           
that each edge of the minimum cut is saturated 
(i.e., used to full capacity) as would                             
naturally be necessary. By contrast, since the 
minimum cut is unique, none of the branches not 
belonging to it is saturated. It is                    
intuitively clear that the minimum cut definitely 
gives an upper bound on the maximum flow, but 
the fact that it is also a lower bound is not nearly 

 

} The vertices 
( �)= ��, and 

)∈ �  

a variable per non-

�� 

[min total capacity of arcs in cut]  

( �)∈ �,� ≠

E  
  
 

\{s,t}  



4.5.2 Example 2 
 

The network shown in Fig 8 has a flow value of 
7, where a numerical expression �/
along each arrow. As usual, this format 
represents flow (�)  and capacity 
respectively and the flow across any of the four 
cutsets of the network has same value of 7. In 
particular, the flow originating from the source 
(the flow across the source vertex cutset) has a 
value of 4+3=7, as does the flow into the sink 
(the flow across the sink vertex cutset)
(3+4=7). 
 

Notably, blue and pale green vertices form the 

subsetsS and T of an s-t cut, whose cutset has 
red edges intersected with a vertical dashed blue 
line denoting the cut. Following the max
min-cut theorem, (equivalence of flow value and 
capacity of s-t cut equal to 7), the value of t
flow and the capacity of the s-t cut are equally 
optimal in the graph. Another crucial observation 
is that the flow through the red edges is at full 
capacity (saturated) since this cutset is one of 
the ‘bottlenecks’ in the network. On the contrary, 
some extra or residual capacity exists on the 
right side of the network. Particularly, Fig. 8 

 

Fig. 6. A simple capacitated (flow) 

network 

 
Fig. 8. A network with a value of flow that equals the capacity of an s
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The network shown in Fig 8 has a flow value of 
/� is formatted 

As usual, this format 
and capacity (�) , 

respectively and the flow across any of the four 
value of 7. In 

particular, the flow originating from the source 
(the flow across the source vertex cutset) has a 
value of 4+3=7, as does the flow into the sink 
(the flow across the sink vertex cutset)               

vertices form the 

t cut, whose cutset has 
red edges intersected with a vertical dashed blue 
line denoting the cut. Following the max-flow 

cut theorem, (equivalence of flow value and 
t cut equal to 7), the value of the 

t cut are equally 
optimal in the graph. Another crucial observation 
is that the flow through the red edges is at full 
capacity (saturated) since this cutset is one of 
the ‘bottlenecks’ in the network. On the contrary, 

extra or residual capacity exists on the 
right side of the network. Particularly, Fig. 8 

depicts a scenario where flow from vertex 
vertex �  is arbitrarily set as 1 although this 
should not be necessarily the case. If no flow 
existed between vertices � and �, then the sink 
inputs will adjust to 4/4 and 3/5 while the total 
flow remains  unchanged   (4+3=7). Otherwise,
doubling the inputs from vertex � 
cause a change in the sink’ inputs (to become 
2/4 and 5/5), but the total flow will remain the 
same (2+5=7). 

 
4.5.3 Example 3 (Example 1 of Section 2 

revisited) 

 
Fig. 9 demonstrates that there exists a unique 
minimal cut {  SA,AC,CD} whose branch 
irrelevant since it points in the opposite direction. 
The capacity of this minimum cut is the sum of 
edge capacities of branches 
Therefore, we obtain. 
 
Min. Cut: Value of Max. flow = Capacity of Min. 
cut = 19. 
 
In agreement with our earlier solution in Example 
1 of Section 2.  

 

 

A simple capacitated (flow) 

 

Fig. 7. The maximum flow for the 

network in Fig. 6 

 

 

A network with a value of flow that equals the capacity of an s-t cut
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depicts a scenario where flow from vertex � to 
is arbitrarily set as 1 although this 

should not be necessarily the case. If no flow 
, then the sink 

inputs will adjust to 4/4 and 3/5 while the total 
(4+3=7). Otherwise, 

 to vertex � will 
cause a change in the sink’ inputs (to become 
2/4 and 5/5), but the total flow will remain the 

Example 3 (Example 1 of Section 2 

Fig. 9 demonstrates that there exists a unique 
whose branch ��  is 

irrelevant since it points in the opposite direction. 
The capacity of this minimum cut is the sum of 
edge capacities of branches ��  and �� . 

Min. Cut: Value of Max. flow = Capacity of Min. 

earlier solution in Example 

 

t cut 



 

Fig. 9. A 9-branch flow network with all 7 possible cuts for Example 3 with a maximum flow 
value of 19 across each of them, 

 
Fig. 10. A 9-branch flow network with all 8 possible cuts for Example 4

 
4.5.4 Example 4 (Example 3 of Section 3 

revisited) 
 

From Example 3 in the previous section 3, we 
obtain. 
 

Min. Cut Value of Max. flow = Capacity of Min. 
cut = 13 
 

The network has a unique minimum cut
� = { ��,��,��}  of minimal capacity
(4 + 3 + 6)= 13 . Each of the other cutsets 
shown in Fig. 10 has a flow of 13 and is 
unsaturated. 
 

5. REDUCTIONS AND TRANSFORMA
TIONS TECHNIQUES 

 

5.1 Introduction  
 

In a flow network problem like the maximum flow 
problem and the shortest path problem, it is often 
required to try to simplify the given flow network 
before using different techniques or algorithms 
available for its solution. This section presents 
various types of reductions and transformations 
[20-22] that can lead to considerable 
simplification. In particular, we present a star
delta transformation that is similar to the one 
used in electrical circuits [23]. The network in the 
maximum flow problem contains edges, each of 
which having a certain flow capacity (indicated by 
a positive integer value) associated with it
are required to find the maximum possible flow 
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branch flow network with all 7 possible cuts for Example 3 with a maximum flow 
value of 19 across each of them, with only one of them saturated 

 

branch flow network with all 8 possible cuts for Example 4

Example 4 (Example 3 of Section 3 

From Example 3 in the previous section 3, we 

Min. Cut Value of Max. flow = Capacity of Min. 

The network has a unique minimum cut-set: 
of minimal capacity =

of the other cutsets 
shown in Fig. 10 has a flow of 13 and is 

REDUCTIONS AND TRANSFORMA-

In a flow network problem like the maximum flow 
problem and the shortest path problem, it is often 

to simplify the given flow network 
before using different techniques or algorithms 

section presents 
various types of reductions and transformations 

] that can lead to considerable 
present a star-

delta transformation that is similar to the one 
]. The network in the 

maximum flow problem contains edges, each of 
which having a certain flow capacity (indicated by 
a positive integer value) associated with it. We 
are required to find the maximum possible flow 

between the source node �  and the terminal 
node � [10,24]. Our target in the maximum flow 
transformations is to prove that in many cases 
the original flow network can be simplified by the 
star-delta and other analogous transformations. 
Such simplifications can significantly reduce the 
computations involved in using the Max
Cut theorem, and in particular when the 
maximum flow between several pairs of points is 
required. Moreover, these simplifica
also reduce the network to a tree, in which the 
maximum flow between any pair of terminal 
points is readily observable. 
To begin, let us mention the three most crucial 
reduction rules (flow network simplifications):
 

5.2 Rule 1  
 

Two edges in series with capacities 
can be replaced by a single edge with a capacity 
equal to min (C�,C�) as can be seen in Fig
 

5.3 Rule 2  
 

Two edges in parallel with capacities 
can be replaced by a single edge with capacity 
equal to (C� + C�) as can be seen in Fig. 12.
 

5.4 Rule 3 
 

An edge between two points might be ‘shorted’ if 
its capacity exceeds or equals the sum of 
capacities of all other edges incident on one of 
the two points. 
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branch flow network with all 7 possible cuts for Example 3 with a maximum flow 

branch flow network with all 8 possible cuts for Example 4 

and the terminal 
Our target in the maximum flow 

transformations is to prove that in many cases 
the original flow network can be simplified by the 

other analogous transformations. 
Such simplifications can significantly reduce the 
computations involved in using the Max-flow Min 
Cut theorem, and in particular when the 
maximum flow between several pairs of points is 
required. Moreover, these simplifications might 
also reduce the network to a tree, in which the 
maximum flow between any pair of terminal 

To begin, let us mention the three most crucial 
reduction rules (flow network simplifications): 

Two edges in series with capacities C� and C� 
can be replaced by a single edge with a capacity 

as can be seen in Fig. 11. 

in parallel with capacities C� and C� 
can be replaced by a single edge with capacity 

as can be seen in Fig. 12. 

An edge between two points might be ‘shorted’ if 
its capacity exceeds or equals the sum of 
capacities of all other edges incident on one of 



5.5 Star-Delta Transformation 
 

Now consider the star-delta transformation [20
25]. Let us consider a given flow network that 
contains a ‘delta network’- viz, three points that 
are joined together, two at a time, with three 
edges, each of which having a finite capacity 
(See Fig. 14). The task is to replace this
network by a star network (dotted lines in Fig. 14) 
and to select the capacities ��,��
that the maximum flow through this new network 
remains the same as before. Assume the flow 
through the delta is as shown in Fig. 14. Then, 
 

C� ≥ f� ≥  − C�,                                                  
 
C� ≥ f� ≥  − C�,                                                  
 

�� ≥ �� ≥  −��.                                                  

 
The sign of the flow should be allowed to be 
either negative or positive since the actual 
direction of flow is unknown. Adding equation (1) 
to equation (3) we obtain,  

 
 C� + C� ≥ f� + f� ≥  − (C� + C�).

 
 

 

Fig. 11. Network simplification of branches in series

 
Fig. 12. Network simplification of branches in parallel

 
Fig. 13. Network simplification of branches for Rule 3
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delta transformation [20-
25]. Let us consider a given flow network that 

viz, three points that 
are joined together, two at a time, with three 

having a finite capacity 
(See Fig. 14). The task is to replace this delta 
network by a star network (dotted lines in Fig. 14) 

�,��� ��  such 
that the maximum flow through this new network 

Assume the flow 
through the delta is as shown in Fig. 14. Then,  

                                                  (1) 

                                                  (2) 

                                                  (3) 

The sign of the flow should be allowed to be 
either negative or positive since the actual 
direction of flow is unknown. Adding equation (1) 

)                 (4) 

Therefore, if in the star we let 

 
C� = C� + C�,                                              

 
Then it can be noticed from equation (4), that this 
edge can handle the flow from (or to) 
originally passed through edges 1 and 3 of the 
delta. 

 
The same argument applies for �� 
we let  

 
C� = C� + C�,                                               

 
Cc= C_2 + C_3,                                          

 

Therefore, if we select capacities C
according to equations (5), (6), and (7) we notice 
that any flow through the original ‘delta
can also be handled by the ‘star-network’. 
Likewise, any flow that we select for the star
network can similarly be handled by the original 
delta-network. 
 

Let us assume that the flow through the star
network is as shown in Fig. 15 such that.

 

Network simplification of branches in series 
 

 

Network simplification of branches in parallel 
 

 

Network simplification of branches for Rule 3 
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                                              (5) 

Then it can be noticed from equation (4), that this 
edge can handle the flow from (or to) ��  that 
originally passed through edges 1 and 3 of the 

 ��� ��, so that 

                                               (6) 

                                          (7) 

C�,C�,and C� 
according to equations (5), (6), and (7) we notice 
that any flow through the original ‘delta-network’ 

network’. 
Likewise, any flow that we select for the star-

milarly be handled by the original 

Let us assume that the flow through the star-
network is as shown in Fig. 15 such that. 
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f� + f� + f� = 0,                                           (8) 

 
C� ≥ f� ≥  − C�,                                            (9) 

 
C� ≥ f� ≥  −C�,                                          (10) 

 
�� ≥ �� ≥  −��.                                          (11) 

 
Now, we can find ��,��,��� �� in Fig. 14 where 

 
f� = f� + f�,                                                (12) 

 
f� = f� − f�,                                               (13) 

 
f� = − f� − f�,                                             (14) 

 
And such that equations (1), (2), and (3) are 
satisfied. Note that if equations (12) and (13) are 
satisfied it will follow from equation (8) that 
equation (14) is also satisfied.  
 
Firstly, we solve for �� ��� ��  in equations (12) 
and (13) and then rewrite equations (1), (2), and 
(3) to get. 

 
C� ≥ f� ≥  − C�,                                            (1) 

 
C� ≥ f� + f� ≥  − C�,(2

�) 

 
C� ≥ f� − f� ≥  −C�,(3

�) 

 
Then, it follows that we should choose �� where 
 
min(C�,C� − f�,C� + f�)≥ f� ≥ max(−C�,−C� −

fb, −C3+fa.                                                    (15) 

 
This can be done provided each term in the right-
hand side of equation (15) is less than or equal 
to each term on the left-hand side of it. Let the 
right terms be ��,��,��� �� correspondingly and 
the left terms be ��,��,��� ��. Subsequently, we 
must satisfy each of the nine inequalities that are 
shown below 

 
L� ≥ R� (definition) L� ≥ R� (6), (10) L� ≥ R� (5), (9) 

 
L� ≥ R� (6), (10) L� ≥ R� (definition) L� ≥ R� (7), (8), (11) 

 
L� ≥ R� (5), (9) L� ≥ R� (7), (8), (11) L� ≥ R� (definition) 

Hence, �� (and thus �� ��� �� ) can be found and 
indeed �� might be selected as max (��,��,��) or 
��� (��,��,��). It can be shown that from the 
aforementioned relations, by applying equations 
(.5), (6), and (7) any delta network can be 
transformed into an equivalent star network. As a 

result, the transformations from a wye to a delta 
is given by: 
 

C� =
1
2� [C� + C� − C�],                             (16) 

 

C� =
1
2� [C� + C� − C�],                             (17) 

 

C� =
1
2� [C� + C� − C�],                             (18) 

 

5.6 Example 
 
In this example, it is required to find the 
maximum flow between node �  and node �  in 
the network shown in Fig. 16. As an offshoot of 
the solution procedure, we will be able to go 
further and consider � as a terminal point in the 
network and ask to find the maximum flow 
between node � and node � and between node 
� and node �. 
 
It can be noticed that, the node �  can be 
eliminated since this node is an intermediate 
point at the center of a wye that can be 
transformed to a delta comprising three branches 
of capacity 5 each. This transformation is done 
by applying equations (16), (17), and (18), and 
after combining the resulting parallel edges 
between node � and node � and between node 
� and node �, the result is as shown in Fig. 17a. 
It can be observed from the network that the 
capacity of an edge �� is greater than the sum 
of the other edges into �; thus, we will apply rule 
3 and � ��� �  will be combined into a single 
point, and the emerging parallel edges are 
combined according to rule 2 as can be seen the 
result in Fig. 17b. Now node � becomes a logical 
choice to eliminate as the center of a wye to be 
transformed into a delta, with the emerging 
parallel edges being combined as shown in Fig. 
17c. Finally, this delta is replaced by an 
equivalent wye as shown in Figu.17d. The 
maximum flows between pairs of terminal points 
can be found since there is a prominent path 
between the ends of each pair of terminal points. 
The value of each maximum flow is equal to the 
minim capacity of the edges of the corresponding 
path where:  
 

f�� = 50,f�� = 50,f�� = 55 
 
Note that all of the three transformations so far 
discussed were employed in obtaining this result. 
To find the actual paths that a flow should follow 
it is necessary merely to start with Fig. 17d and 
work successively backwards. 



6. THE DECOMPOSITION TECHNIQUE
 
The decomposition technique involves tuning
complicated network (complex system) to adopt 
the possible states of a keystone element 
the possible combinations of states of many 
keystone elements [5,26-30,31]. In other words, 
this method entails a single application or 
multiple applications of the law of total 
probability. In its simplest form, it involves 
selecting a keystone element and then 
computing the reliability of the network twice: 
once as if the keystone element did not succeed 
(� = 0) and once as if the keystone element 

 
Fig. 14. The flow through the delta network

 
Fig. 16. A capacitated network of 11 branches

 

Fig. 17. Transformation procedure for the flow network in Fig
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THE DECOMPOSITION TECHNIQUE 

technique involves tuning a 
complicated network (complex system) to adopt 
the possible states of a keystone element �� or 
the possible combinations of states of many 

30,31]. In other words, 
entails a single application or 

multiple applications of the law of total 
probability. In its simplest form, it involves 

t and then 
computing the reliability of the network twice: 
once as if the keystone element did not succeed 

) and once as if the keystone element 

were good ( � = 1 ). After that, the method 
combines these two probabilities to get the 
reliability of the system, since at any given time 
the key component will be failed or operating. 
The Venn graph in Fig. 18 shows the event 
which signifies that the system is working 
successfully. This event can be partitioned in the 
form of a union of two dependent events
mutually exclusive, namely (i)  �
indicates that the keystone branch is in the 
operating state and the system is working and 
(ii)  ��� ∩ � , which indicates that 
branch is in the unsuccessful state and the 
system is functioning correctly. 

 
 

 

Fig. 14. The flow through the delta network 

 
Fig. 15. The flow through the wye network

 

 

16. A capacitated network of 11 branches 
 

 

17. Transformation procedure for the flow network in Fig. 16 
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). After that, the method 
combines these two probabilities to get the 

stem, since at any given time 
the key component will be failed or operating. 

graph in Fig. 18 shows the event �, 
signifies that the system is working 

successfully. This event can be partitioned in the 
form of a union of two dependent events that are 

�� ∩ � , which 
the keystone branch is in the 

operating state and the system is working and 
 the keystone 

branch is in the unsuccessful state and the 

 

Fig. 15. The flow through the wye network 



 
 

The technique’s main objective is to decompose 
the system graph into two sub graphs 
and  ��� ∩ � , each of which is with a simpler 
topology than that of the original graph. Based on 
the total probability theorem (see, e.g., DeGroot
[32] & Ross [33]), the probability ��
that the system is operating, is obtained as the 
sum of probabilities of the afore-mentioned two 
mutually-exclusive events:  
 

Pr(S)= Pr(S∩ K�)+ Pr(S∩ K��)               
 

Equation (19) can be simplified via 
 

Pr(S∩ K�)= Pr(S|K�) Pr (K�) and 
 Pr(S|K��) Pr (K��), to find: 
 
Pr(S)= Pr(S|K�)Pr (K�) + Pr(S|K��)
 
In equation (20) Pr(�|��) is the probability that 
the network is working given that the keystone 
element is in the operating state and 
the probability that the network is working given 
that the keystone branch is in the failed state, 
while Pr (K�) and Pr (���)  are the probabilities 
that the keystone element is in the operating 
state and in the failed state, respectively. 
Likewise, if a pair of independent keystone 
branches ��  and ��  have been chosen (rather 
than just one keystone branch), the probability of 
network success Pr(�)  (the reliability of the 
system) is determined as the summation of 
probabilities of four events, which are a
exclusive.  
 
Pr(�)= Pr(�|����)Pr (��)Pr (��) + Pr(�|�����) Pr 
Pr(�|�����) Pr (���)Pr(��)+ Pr(�|������) Pr (���)Pr (��

 

The network in Fig. 19, for instance, cannot be 
simplified by using series-parallel reduction. 

 
Fig. 18. Event S, which indicates a fully functional system, partitioned as the union of a pair of 

mutually exclusive events: 
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The technique’s main objective is to decompose 
the system graph into two sub graphs �� ∩ � 

, each of which is with a simpler 
topology than that of the original graph. Based on 
the total probability theorem (see, e.g., DeGroot 

��(�) of event � 
that the system is operating, is obtained as the 

mentioned two 

� )               (19) 

 

and Pr(S∩ K��)=

� ) Pr (K��)   (20) 

is the probability that 
the network is working given that the keystone 
element is in the operating state and Pr(�|���) is 
the probability that the network is working given 
that the keystone branch is in the failed state, 

are the probabilities 
that the keystone element is in the operating 
state and in the failed state, respectively. 

a pair of independent keystone 
have been chosen (rather 

than just one keystone branch), the probability of 
(the reliability of the 

system) is determined as the summation of 
probabilities of four events, which are all mutually 

� )  (��)Pr (���)+
���)  

The network in Fig. 19, for instance, cannot be 
parallel reduction. 

However, its analytical reliability is computed 
through the afore-mentioned decomposition 
technique. The system includes eight unreliable 
branches with availabilities 0 ≤ �
directed s-t path exists between the source 
the sink � , the throughput flow is greater than 
zero. 
 
If branch (1, 3) is chosen as a keystone element 
� , the probability of network success 
obtained based on the following equation 
 

Pr(S)= Pr(S|K)Pr (K) + Pr(S|K�

 
The probability Pr(�|�) of the network in
19B can be obtained through a series
reduction. The parallel sections (1, 2) and (1, 4) 
dictates the success probability of two parallel 
components, which is equivalent to 
(1 − �)� . Therefore, the success probability for 
the system in Fig. 19B becomes  
 

Pr(�|�)= 1 − (1 − �)∗(1 − ��
 
Fig. 19C, which shows the network’s success 
when the keystone element fails, yields 

 
Pr(S|K�)= 1 − (1 − p�)�                            

 
Since Pr(K)= �  and Pr(K�)
substitution in equation (21) yields the probability 
of network success Pr(S) for the initial network in 
Fig. 19A:  
 
Pr(S)= p ∗[1 − (1 − p)(1 − p�p)

�] + (1
[1 − (1 − p�)�]                                                   

 
Substituting in equation (24) with 
p� = 0.877 and Pr(S)= 0.84. 

 

 

18. Event S, which indicates a fully functional system, partitioned as the union of a pair of 
mutually exclusive events: �� ∩ � and ��� ∩ � 
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However, its analytical reliability is computed 
mentioned decomposition 

technique. The system includes eight unreliable 
� ≤ 1 . Since a 

t path exists between the source � and 
ghput flow is greater than 

If branch (1, 3) is chosen as a keystone element 
, the probability of network success ��(�) is 

obtained based on the following equation  

( K�) Pr (K�)   (21) 

of the network in Fig. 
19B can be obtained through a series-parallel 
reduction. The parallel sections (1, 2) and (1, 4) 
dictates the success probability of two parallel 
components, which is equivalent to �� = 1 −

. Therefore, the success probability for 

��)
�           (22) 

Fig. 19C, which shows the network’s success 
when the keystone element fails, yields  

                            (23) 

(�)= 1 − p,  the 
substitution in equation (21) yields the probability 

for the initial network in 

] (1 − p)∗

                                                   (24) 

Substituting in equation (24) with p = 0.65 yields 

18. Event S, which indicates a fully functional system, partitioned as the union of a pair of 



 
Fig. 19. Decomposition technique for evaluating complex systems’ reliability

 

 
Fig. 20. Decomposition-based technique for determining a topologically complex network’s 

reliability on sequential selection of two keystone components
 
If the probability of success for any basic network 
is hard to compute, an alternative decomposition 
is selected by choosing another keystone branch 
��  and so on. The process is iterated until 
networks are obtained whose probability of 
success can be assessed effortlessly via series
parallel reductions. Consider the complex system 
� in Fig. 20A which contains seven independent 
identically distributed branches each with 
reliability � . The network works if an s
between the source node and the sink node 
exists.  
 

Although this network is not trivial, it can be 
simplified if a keystone component 
selected. The reliability of the system 
probability of network success) can be obtained 
from equation (20). Since the probability 
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based technique for determining a topologically complex network’s 
reliability on sequential selection of two keystone components 

ility of success for any basic network 
is hard to compute, an alternative decomposition 
is selected by choosing another keystone branch 

and so on. The process is iterated until 
networks are obtained whose probability of 
success can be assessed effortlessly via series-
parallel reductions. Consider the complex system 

20A which contains seven independent 
anches each with 

. The network works if an s-t path 
between the source node and the sink node 

Although this network is not trivial, it can be 
simplified if a keystone component ��  is 
selected. The reliability of the system ��(�) (The 
probability of network success) can be obtained 
from equation (20). Since the probability 

Pr(��)= �  and Pr(��)= 1 − �, the probability of 
network success becomes. 

 
Pr(�)= � ∗Pr(�|��)+ (1 − �)∗

 
The probability of network success 
shown in Fig. 20C can be readily obtained 
because it is equivalent to the network shown in 
Fig. 20F, whose branches have a simple series
parallel reduction. Consequently, the probability 
of a directed s-t path for the system shown in Fig
20C is  

 
Pr(�|���)= � ∗[1 − (1 − �)(1 − ��)

 
For � = 0.7,  equation (26) evaluates to 
Pr(�|���)= 0.59. 
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based technique for determining a topologically complex network’s 

the probability of 

)∗Pr(�|���) (25) 

The probability of network success Pr(�|���) 
20C can be readily obtained 

because it is equivalent to the network shown in 
20F, whose branches have a simple series-

parallel reduction. Consequently, the probability 
t path for the system shown in Fig. 

)]               (26) 

equation (26) evaluates to 
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The subgraph shown in Fig. 20B which results 
from the decomposition of the sub graph shown 
in Fig. 20A is not a trivial subgraph. However, by 
picking another keystone branch �� , it can be 
decomposed further into two trivial subgraphs 
(Figs. 20D and 20E) whose probability of 
success can be evaluated easily. Thus, 

 
Pr(�|��)= Pr[(�|��)|��] ∗Pr(��)+ Pr[(�|��)|���] ∗

Pr(���)                                                              (27) 

 
For � = 0.7, we obtain 

 
 Pr[(�|��)|��] = [1 − (1 − �)�] ∗[1 − (1 − �)�] = 0.885, 
 
Pr[(�|��)|���] = 1 − [1 − (1 − (1 − �)�)�](1 − ��)= 0.81,  
 

Pr(��)= � = 0.7 ��� Pr(���)= 1 − � = 0.3. 
 

Substituting these values in equation (27) yields 
 

Pr(�|��)= 0.885∗� + 0.81 ∗(1 − �)= 0.864 (28) 
 
Finally, the substitution in equation (25) gives  
 

Pr(�)= � ∗0.862+ (1 − �)∗0.59 = 0.78  
 
For the probability of success, in the initial graph 
of Fig. 20A. This example demonstrates that the 
decomposition technique can be applied for the 
analysis of a complex system, and might be 
adapted for computations pertinent to 
capacitated networks [33,34]. This technique, 
however, has substantial constraints. For 
instance, it is inappropriate for large systems. A 
keystone selection splits large system into two 
sub-systems, which in turn are split again, and 
the process continues. For a large number � of 
branches in the initial system, the number of sub-
systems generated through the decomposition 
with respect to keystone elements quickly 
increases exponentially and becomes 
uncontrollable for large � . Regardless of the 
considered techniques, the reliability analysis of 
a system based on minimal cut-sets and minimal 
paths can be applied for determining the 
probability of system success. Likewise, the main 
problem of reliability analysis is the increase in 
network size with every additional minimal path 
and cut-set.  

 
In conclusion, the discussed analytical technique 
for the analysis of capacitated networks are not 
appropriate for sizeable and complex systems. 
The system reduction rule is not appropriate for 
topologically complex systems while the 

decomposition technique is not appropriate for 
large systems. 
 

7. FLOW NETWORKS APPLICATIONS  
 
Flow networks have useful applications in real-
world scenarios, such as distribution of electricity 
and transportation networks. The same principle 
applies in all the applications, where the inflow at 
a specific node must equal the outflow at that 
node. The conservation constraint is analogous 
to Kirchhoff's current law in electric circuits. In 
this section, various applications of flow network 
problems are explained based on all kinds of 
problems discussed earlier. Section 7.1 
highlights maximum flow problem applications in 
various categories like web communities, image 
segmentation, telecommunications, wireless 
networks and transportation. Additionally, 
Section 7.2 discusses the implementation of 
minimum-route problems, and their utilizations in 
various areas, such as very large-scale 
integrations, facility layout design, facility location 
and robotics. Besides, we will introduce in each 
of these two subsections a brief explanation 
about each application, supported by appropriate 
reference to pertinent research papers. 

 
7.1 Applications of the Maximum Flow 

Problem 
 

Capacitated networks play a vital role in our 
modern society. Their applications cut across a 
variety of areas such as transportation systems 
and manufacturing networks. Notably, they 
comprise important aspects of flow of basic items 
from suppliers to customers. They are also 
instrumental in the implementation of telephone 
networks, which enable cross-border 
communication. Similarly, computer network 
technology uses this flow network problem to 
implement broadband communication and 
internet services, which allow easy 
communication within local or global 
communities. 
 

7.1.1 Telecommunication wireless networks  
 

Till today, many people might think that in 
telecommunication wireless networks, there are 
no edges between terminal points or vertices. 
Other common network structures include wired 
networks that use wires or cables or 
transportation networks that have easily 
observable physical links between vertices. 
However, flows in wireless networks are mainly 
expressed as electromagnetic waves broadcast 
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by the communication system through a 
communication channel that might be a material 
medium or vacuum. Generally, 
telecommunication networks have several 
applications in the wireless-communication areas 
such as satellites, the Internet, and cellphones, 
etc. Like many other network structures, the 
transmission of the maximum possible flow 
(waves) through these frameworks is a crucial 
task in the telecommunication systems; thus, the 
operation of the maximum flow methods remains 
useful for telecommunication systems [35]. In 
general, an overview of the performance of a 
telecommunication is presented below. 
 

A typical broadband connection has several 
users (nodes or vertices) with various needs. 
These needs vary based on the traffic usage in 
particular; therefore, prioritizing internet services 
based on utility rates is crucial for efficient 
service delivery. Therefore, offering maximum 
service means creating maximum flow (waves) 
across areas with the most signal interruptions 
by end users. While this may imply installing 
additional base stations, it also increases noise, 
which may affect the quality of waves. So, the 
providers need to constantly monitor the quality 
of their transmissions. Rushdi and Alsalami [36] 
examined two simples, albeit useful, methods 
used to evaluate the reliability of two-terminal 
multistate flow networks in communication 
systems. Their target is the evaluation of the 
probability mass function (pmf) in a wide array of 
cases, in which they consider flow in a 
capacitated network from a source node to a sink 
node with a multistate capacity model for the 
links. Each network link has a varying capacity, 
which is assumed to exist in a mutually exclusive 
sense. The reliability of the system is wholly 
dependent on its ability to transmit successfully 
at least a certain required system flow from the 
source (transmitter) to the sink (receiver) station. 
The max-flow min-cut theorem is critical in 
obtaining all successful states.  
 
7.1.2 Image segmentation  
 

One of the most prominent research topics in the 
field of medical systems is that of an image 
segmentation system. This system delineates the 
parts of the body or organ images in such a way 
that the infected part of the body (e.g. cancer 
tissues) can be obviously shown. For instance, 
examination of kidney tumor offers an ideal 
application of the maximum flow problem to 
produce images for various tissue slices in such 
a way that the important part of the tumor tissue 

can be clearly evaluated. Any two parts of organ 
has special connection in biological organ 
examination. Therefore, the image segmentation 
for body organs is greatly different from other 
kinds of images [37]. Notably, there are 
similarities between the image segmentation 
problems and the maximum flow concept, since it 
replicates the theorem of the max-flow min-cut, 
which is the core of the maximum flow problem. 
The corresponding nodes and links might also be 
defined in medical parameter terms if the graph 
or image is configured as two portions. 
Therefore, the best cut separating the graph into 
two parts exhibits the minimum cut capacity or 
analogously, the maximum flow delivered from 
part 1 to part 2. 
 

7.1.3 Extraction of web communities  
 

The web is a common application of maximum 
flow problem, which is a directed graph or flow 
network. Each web page is a node while the 
hyperlinks are its branches in graph theory. As a 
normal browser of the Internet, when you are 
looking for a particular item via the Internet (e.g. 
certain items on the Amazon site or a research 
paper in Google Scholar, etc.), obviously, you 
expect to find out your item that you are looking 
for quickly. This accessibility depends on several 
crucial considerations; one of them is the 
connection between web pages, or so-called 
nodes in graph theory, to each other via 
hyperlinks (branches). Therefore, the interlinked 
web pages will significantly affect access speed 
by the end-users. Actually, one of the crucial 
factors in this subject is the significance of this 
web analogy. This is crucial since the Internet 
browser (user) normally would not be expected 
to go to shopping sites while he is looking for a 
research paper! According to this assumption, a 
community of the Web can be described as a 
group of websites. These websites have more 
connections or hyperlinks than websites outside 
the scope of the community [38]. The difference 
is glaring when you compare scientific research 
or academic related web communities with 
shopping communities. Notably, applying the 
maximum flow problem and its theorem (the 
max-flow min-cut theorem) on these web 
communities can help extract related web 
communities. Flake et al. [39] showed that 
applying the maximum flow algorithm on these 
communities yields a pair of nodes, such as a 
source node and a sink node, which are 
accessible from the source node across 
augmenting routes that satisfy the web 
community definition. However, if the minimum 
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cut links remain unsaturated, in which case the 
flow along these links might be augmented, such  
links might be added to the web community. If 
this is the case, then the process will be repeated 
until all links become saturated (the flow along all 
edges cannot be augmented anymore). During 
this step, the web community will be recognized 
and the links that connect it to another web 
community will remain unsaturated.  
 

7.1.4 Transportation  
 

There are several cases of a transportation 
system where the theorem of the maximum flow 
can be applied like the following cases. The first 
case concerns the popular system structure, 
where maximization of flow between a pair of 
nodes is the top priority. Consider a supply chain 
structure, which is comprised of clients, retailers, 
wholesalers, manufactures and service 
providers. Notably, each entity denotes a node or 
a vertex in graph theory. In such a system, one 
of the basic and important criteria is to convey 
the product elements and merchandise between 
every two nodes (such as moving goods from 
distributors to clients), which should involve 
moving maximum possible items. Moreover, 
another case concerns urban planning systems 
such as street networks. This network is 
expected to apply the theorem of the maximum 
possible capacities, where they can utilize the 
possible maximum vehicles to move goods 
through the streets. Additionally, the case of 
emergency and high-priority circumstances can 
be considered as one in which the maximum flow 
becomes useful whenever high-priority or 
emergency scenarios exist, Such as a scenario 
of evacuation of people during emergencies like 
natural disasters. Notably, evacuation of people 
from affected areas is one of the most difficult 
problems to solve. Such a situation can have a 
flow-network interpretation, as the evacuees 
(standing for flow “commodity”) must leave the 
danger area, denoted as the source node, 
towards a secured area, represented as the sink 
node.  
 
7.1.5 Ecosystems 
 
The flow network has some other applications in 
ecology, particularly in nutrients and energy flow 
among various organisms in a food web. 
Nevertheless, such an application differs from 
the normal traffic or fluid flow due to differences 
in the mathematical problem associated with it. 
Ulanowicz and Wolff [40] developed a network 

analysis for the ecosystem field, which applies 
thermodynamics and information theory concepts 
to examine evaluation of such a field over time. 
Rushdi and Alsalami [41] attempted to set the 
stage for a prospective interplay between 
ecology and reliability theory concerning the 
common issue of the concept of a capacitated or 
flow network. They treat the problem of species 
survivability, which pertains to the ability of a 
specific species to avoid local extinction by 
migrating from a critical habitat patch to more 
suitable destination habitat patches via perfect 
stepping stones and heterogeneous imperfect 
corridors. Their paper proposes various types of 
techniques for analyzing a capacitated ecological 
network for the process of migration in a meta-
population landscape network that arises when 
paths to destination habitat patches share 
common corridors. Their techniques include (a) 
Karnaugh maps, which are crucial in providing 
not only the visual insight necessary to write 
better future software but also constitute an 
adequate means of verifying such software and, 
(b) a generalization of the max-flow min-cut 
theorem that is applicable through the 
identification of minimal cut-sets and minimal 
paths in the ecological flow network. 
 
At the end of this subsection, Table 7 classifies 
some papers that pertain to some of the afore-
mentioned applications. 
 

7.2 Applications of the Minimum-Route 
Problem 

 
7.2.1 Very-large-scale integration (VLSI)  
 
Mostly in network design, millions of very small 
components including transistors, resistors, and 
diodes are assembled on a microchip to come up 
with an integrated circuit on a very large scale. 
Very-large-scale-integrations (VLSI) have 
improved a lot over the years due to various 
technological advancements. Today, microchips 
that can store millions of megabytes of data exist 
due to integrated circuits that consist of millions 
of very small transistors. Thus, the very-large-
scale integration system is mostly troubled with 
the discovery of suitable paths and layouts that 
enable transmission of data or nay information 
over the minimum routes. The VLSI problems 
become easier since technology can help 
humans generate the minimum routes required 
to create a grid graph consisting of millions of 
nodes [55]. Actually, the minimum route notion in

 



 
 
 
 

Alsalami and Rushdi; AJRCOS, 7(3): 1-33, 2021; Article no.AJRCOS.66089 
 
 

 
26 

 

Table 7. Maximum flow problem applications and their classification 
 

Type of application Article The solution approach 
Telecommunication Wireless Networks Azar et al. [42] Involves an algorithm and a linear program to model a two-part flow problem in 

infrastructure wireless networks with adaptive channel width. Notably, the 
solution is adaptable to fit requirements by particular applications. 

Caillouet et al. [43] Utilizes the max-flow min-cut theorem to address bandwidth allocation issues in 
a network (wireless). This theorem uses the more common version of graph 
theory, particularly in the development of the Cut Covering Problem (CCP). 

Hu et al. [44]  Is mostly applicable in solving wireless mesh network issues, which include 
maximum flow and bandwidth routing problems. It also, proposes a heuristic 
algorithm and derives an optimization bound. 

Thulasiraman & Shen [35]  Entails design of OFDMA based hybrid hierarchical wireless networks to solve 
interference aware resource allocation problems.  

Rushdi & Alsalami [36] Examines two simple (albeit useful) methods used to evaluate the reliability of 
two-terminal multistate flow networks in communication systems. 

Image Segmentation Freedman & Zhang [45]  Highlights automatic segmentation on multiple applications using the interactive 
segmentation algorithm. It seeks to implement alternative semi-automatic 
segmentation to enable diversity in automation.  

Song et al. [37] Applied in prostrate and bladder imaging to produce shape and appearance 
information in 3-D graphs. Notably, the study aims at enhancing the quality of 
medical imaging and overcome simultaneous segmentation problems. 

Zeng et al. [46] Designs and implements a novel graph-based min-cut/max-flow algorithm. It is 
also useful in extracting web communities based on maximum flow aspects.  

Extraction of Web Communities Asano et al. [47]  Shows various uses of maximum flow in the extraction of web communities in 
web-based sites.  

Horiike et al. [38]  Proposes an algorithm to extract research communities from bibliography data, 
and discusses a case study dealing with the web mining from Cite Seer 
bibliography data. The technique applied there is the maximum flow concept.  

Imafuji & Kitsuregawa [48]  Uses the maximum flow algorithm to extract a sub graph, which can be 
recognized as a good web community in qualitative and quantitative contexts. 

Transportation Anderson et al. [49]  Applies a case study in mapping modern roads using sensors against terrorist 
attacks. Moreover, it is useful for detection and prevention of attacks, which 
target populated areas. 

Brede & Boschetti [50]  Highlights a weighted passenger flow network for passengers in European 
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Type of application Article The solution approach 
countries. In addition, it uses the maximum flow network concept. 

Çalıskan [51]  Presents a simplex algorithm to solve constrained transportation issues.  
Rebennack et al. [52]  Depicts a specific solution for emergency transport management using the 

maximum contraflow concept. 
Ecosystem  Rushdi & Alsalami [41] Attempts to set the stage for a prospective interplay between ecology and 

reliability theory concerning the common issue of the concept of a capacitated or 
flow network. 
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Table 8. Sources related to the shortest path problem 
 

Type of application Article The solution approach 
Very-Large-Scale Integration (VLSI)  Aggarwal et al. [53]  Presents a solution for determining the shortest path in the VLSI layout 

problem using a multi-layer grid model.  
Brazil et al. [54]  Solves the VLSI wiring design problem by determining the shortest 

length or a network (Steiner-tree network).  
Peyer et al. [55]  Obtains the shortest path in VLSI problems with the help of a Dijkstra’s-

based algorithm.  
Robotic Systems  Asano et al. [56]  Employs pseudo ε-approximate approaches to plan (Euclidean) shortest 

path for robots. 
Kala et al. [57]  Highlights various approaches to find best robot routes though fuzzy-

based and heuristic shortest path algorithms. 
Priya et al. [58]  Introduces a solution for mapping the best (shortest) paths between a 

pair of mobile devices with Field-programmable Gate Arrays (FPGA)  
Sun et al. [59]  Proposes a Dijsktra-like algorithm based on the tabu restriction concept. 

It is mainly used for robotic path planning. 
Transportation of Hazardous Materials  Androutsopoulos and Zografos [60]  Poses a simultaneous routing and scheduling problem used in 

minimizing routes during transit of hazardous materials.  
Boulmakoul [61]  Applied in transport of toxic materials and uses the geographical 

information system (GIS) to get optimal k-shortest routes.  
Carotenuto et al. [62]  Is an equitable approach towards transport of hazardous substances 

using a risk-based mathematical model. 
Dadkar et al. [63]  Depicts transport of toxic materials in US roads using the k-shortest 

path algorithm.  
Diaz-Banez et al. [64]  Describes transportation of toxic wastes based on the continuous 

decision-based shortest route problem  
Facility Location and Facility Layout  Dong et al. [65]  Proposes a shortest path concept for a multi-stage facility layout using 

the auction algorithm.  
Huang et al. [66]  Provides useful information on getting the shortest route between two 

facilities using the Manhattan-distanced heuristic algorithms  
Lee et al. [67]  Gives a shortest path solution for multiple floor layouts using the 

Dijkstra’s algorithm.  
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this context indicates the minimum-wired 
distance between two metal elements, which are 
supposed to be connected in a grid graph. The 
Euclidean and rectilinear distances are the 
common means for measuring the gaps between 
nodes or vertices (chip’s components). 
 
7.2.2 Robotic systems  
 
Robots are rapidly becoming indispensable 
essential elements in industries and home 
applications. Therefore, scientist continue to 
explore routing solutions for these robots to 
integrate them in our daily operations. The need 
to solve the routing problem is even more urgent 
for autonomous robots. Notably, we do not fancy 
robot accidents that perform important functions 
aside from the need to operate efficiently without 
wasting time during movement [58,59]. Notably, 
route planning for robots can also benefit from 
the minimum route problem. Similar applications 
that utilize the maximum route planning include 
computer aided manufacturing (CAM), computer 
aided design (CAD), and so on. Therefore, 
implementing routing algorithms in robotics will 
not be a new phenomenon.  
 
7.2.3 Hazardous materials transportation 

(HMT) 
 
Today, transportation and disposal of hazardous 
materials is a sensitive issue since it involves 
transporting things like chemicals, cryogens, gas 
cylinders, etc. Since these materials are 
oversensitive as they are excessively or 
abnormally responsive or susceptible to specific 
stimuli or agents, they should be transferred from 
a source node to a sink node through the 
minimum route. Therefore, in order to reduce the 
primary risk encountered when shipping these 
materials, the best k-minimum routes are 
factored in during routing for emergency 
purposes. Therefore, transporters can shift from 
one optimal route to the other during 
emergencies [63]. In fact, the route from the 
source node to the sink node can be the 
minimum route, but it passes through many 
residential areas. Thus, such a route is rather 
omitted and replaced by other nearly-optimal 
routes that expose less people to risks.  
 
7.2.4 Facility location and facility layout  
 
Moving between facilities can be a hard task, 
especially when it involves traversing multiple 
routes. Therefore, facilities can be considered as 
network nodes, where the minimum route 

problem can be used to find the minimum 
possible routes between two locations. The case 
study of the manufacturers, suppliers, distributors 
and customers provides an ideal example when 
minimizing distance. For instance, decision-
makers will prioritize minimizing distance 
between manufactures and suppliers, then 
distributors in that order. Similarly, the route 
between machines and other essential items are 
crucial in the layout problem. The proximity, for 
example between a machine and another piece 
of equipment, should be easy to adjust using the 
minimum routing to facilitate operations and 
enhance efficiency. At the end of this subsection, 
a few useful papers that are relevant for each of 
the afore-mentioned applications are 
summarized in Table 8. 
 

8. CONCLUSIONS 
 

This paper provides an overview of flow network 
notions which details network properties, and 
some problem definitions, while viewing the 
maximum flow aspects. It also presents a review 
of some important algorithms used to solve the 
maximum-flow problem such as the Ford and 
Fulkerson algorithm supplemented with an 
additional example to explain the algorithm. The 
max-flow min-cut theorem is presented in detail, 
the concepts behind it are analyzed, and some 
examples and their solutions are provided to 
demonstrate this theorem. Moreover, the paper 
explains the reduction and transformation 
methods used in a flow network as well as the 
decomposition technique which is one of the old 
and common techniques for analyzing 
capacitated systems. Some applications of flow 
network problems (including the maximum flow 
problem and the minimum routing problem) have 
been also discussed. 

 
A major underlying assumption of this paper is 
that the flow network considered is deterministic 
rather than probabilistic since it comprises 
perfect elements that are not susceptible to 
failure. A more realistic model of a flow network 
relaxes this assumption and treats the network 
as a probabilistic one with components that can 
randomly be good or failed, and hence are 
described by Boolean variables called 
component successes. In this case, the network 
capacity is replaced by a pseudo-Boolean 
capacity function that depends on component 
capacities and successes. Many of concepts and 
procedures considered in this paper have direct 
extensions for such a probabilistic case 
[21,22,25,34,36,41,68-70] 
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