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In this article, we use the p-Laplace decomposition method to find the solution to the initial value problems that involve
generalized fractional derivatives. The p-Laplace decomposition method is used to get approximate series solutions. The
Adomian decomposition is improved with the assistance of the p-Laplace transform to examine the solutions of the given
examples to demonstrate the precision of the current technique.

1. Introduction

Fractional calculus has grown in popularity in applied math-
ematics, and it has been used to describe a variety of physical
scientific domains such as viscoelasticity, control, and diffu-
sion. Fractional differential equations are encountered in a
variety of areas of engineering and physical study, such as
[1–3]. Different approaches have been used to study and
solve fractional differential equations [4–15]. The integral
transform methods are critical for handling a wide variety
of problems. To get analytical solutions, in certain cases,
they have been used in conjunction with several analytical
techniques [16–19], and it has been shown to be successful
in overcoming problems. The p-Laplace transform is a gen-
eralized Laplace transform introduced by [20] to solve frac-
tional differential equations with generalized fractional
derivatives. The influence of the different values of order q
and parameter p on the solution of a common widespread
fractional differential equation with Caputo generalized frac-
tional derivative is studied.

In [21], Shah et al. used the homotopy perturbation
method with thep-Laplace transform to obtain the solutions
of the nonlinear system of fractional Kersten–Krasil’shchik
coupled Kdv equation. Thanompolkrang et al. in [22] found
the fractional Black–Scholes European equation solution
using the homotopy perturbation method with generalized

Laplace transform. Bhangale et al. [23] solved fractional
differential equations with generalized fractional derivatives
by using a coupling of p-Laplace transform method and an
iterative approach.

The p-Laplace transform decomposition method com-
bines the p-Laplace transform and a domain decomposition
method. The goal of this research is to use the p-Laplace
transform decomposition technique to solve initial value
problems involving generalized fractional derivatives.

This work is broken down as follows. In Section 2, we
give the definitions of generalized fractional integral, gener-
alized fractional derivative, and the p-Laplace transform.
The p-Laplace decomposition method and the convergence
are shown in Sections 3 and 4, respectively. In Section 5, test
examples are examined to illustrate the efficiency and
features of the presented method. Finally, conclusions from
the present research are given in Section 6.

The proposed method has some advantages and
disadvantages:

(i) This method gives the solution with fewer arith-
metic calculations and with high efficiency

(ii) The p-Laplace decomposition method is devoid of
any restrictive assumptions, perturbations, discreti-
zation, or linearization
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(iii) The main disadvantage of this method is that it
gives the solution in a series form, but the series
solution needs to be truncated to use it in the real-
time applications. Moreover, the rate and region of
convergence are issues that could occur

2. Basic Definitions

Definition 1. For the function h : ½0,∞�⟶ℝ, the general-
ized fractional integral of order q > 0, where p > 0, given
in [20] is defined by

Iq,p
a h Xð Þ = 1

ℾ qð Þ
ðX
a

Xp − Sp

p

� �q−1 h Sð Þ
S1−p dS , X > a ≥ 0, 0 <q < 1:

ð1Þ

Definition 2. For the functionh : ½0,∞�⟶ℝ, the generalized
fractional derivative of orderq > 0, wherep > 0, given in [20] is
defined by

Dq,p
a h Xð Þ = 1

ℾ 1 −qð Þ
d
dX

� �ðX
a

Xp − Sp

p

� �−q h Sð Þ
S1−p dS , X > a ≥ 0, 0 <q < 1:

ð2Þ

Definition 3. For the function h : ½0,∞�⟶ℝ, the Caputo
generalized fractional derivative of order q > 0, where p > 0,
given in [20] is defined by

GCD
q,p
a h Xð Þ = 1

ℾ 1 −qð Þ
ðX
a

Xp − Sp

p

� �−q Bnh Sð Þ
S1−p dS , X > a ≥ 0, 0 <q < 1,

ð3Þ

whereB =X1−Bd/dX.

Definition 4. The p-Laplace transform of a function h : ½0,
∞�⟶ℝ given in [20] is defined by

Lp h Xð Þf g =
ð∞
0
e−SX

p/ph Xð Þ dX

X1−p : ð4Þ

The p-Laplace transform of the function h with Caputo
generalized fractional derivative given in [20] is defined by

Lp Dq,p
a h Xð Þf g = SqLp h Xð Þf g − 〠

n−1

k=0
Sq−k−1 Iq,pBnhð Þ 0ð Þ:

ð5Þ

3. Analysis of Method

Consider the fractional problem with Caputo generalized
fractional derivative in the form

D
q,p
0 Y τð Þ +MY τð Þ +NY τð Þ =F τð Þ,q > 0, 0 <q ≤ 1,

ð6Þ

subject to

Y 0ð Þ =G τð Þ, ð7Þ

where MYðτÞ is a linear function, NYðτÞ is a nonlinear
function, and FðτÞ is a function of τ.

Taking p-Laplace transform to Equation (6), we get

Lp D
q,p
0 Y τð Þ +MY τð Þ +NY τð Þ� �

=Lp F τð Þ½ �, q > 0, 0 <q ≤ 1,

Lp Y τð Þ½ � = G τð Þ
s

+ 1
sq

Lp F τð Þ½ � − 1
sq

Lp MY τð Þ +NY τð Þ½ �:

ð8Þ

Operating the inverse p-Laplace transform, we obtain

Y τð Þ =H τð Þ −L−1
p

1
sq

Lp MY τð Þ +NY τð Þ½ �
� �

, ð9Þ

where

H τð Þ =L−1
p

G τð Þ
s

+ 1
sq

Lp F τð Þ½ �
� �

: ð10Þ

The method represents the solution as an infinite series

Y τð Þ = 〠
∞

n=0
Yn τð Þ, ð11Þ

and the term NYðτÞ is given by

NY τð Þ = 〠
∞

n=0
An, ð12Þ

where the A domain polynomials An can be formed as

An =
1
n!

dn

dIn N 〠
n

i=0
IiY i

" #
β=0

: ð13Þ

Substituting Equations (12) and (13) into Equation (9)
yields

〠
∞

n=0
Yn τð Þ =H τð Þ −L−1

p

1
sq

Lp M〠
∞

n=0
Yn τð Þ +An

" #" #
:

ð14Þ

We obtain the recursive relation

Y0 τð Þ =H τð Þ,

Yn+1 τð Þ = −L−1
p

1
sq

Lp MYn τð Þ +An½ �
� �

, n ≥ 0:

ð15Þ
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The approximate solution can be expressed as

Y τð Þ = 〠
∞

n=0
Yn τð Þ: ð16Þ

4. Convergence Analysis

In this section, we established the convergence and unique-
ness of the p-Laplace decomposition method.

Theorem 1. The p-Laplace decomposition solution of (6) is
unique whenever 0 < ðC1 +C2Þðτq/ℾ ½1 +q�Þ < 1.

Theorem 2. The p-Laplace decomposition method solution
of the problem (6) is convergent.

Proof. Let Y ι =∑ι
ν=0YνðτÞ. To prove that Y ι is a Cauchy

sequence in Banach space W, we consider

Y ι −Yκk k =max
τ∈T

Y ι −Yκj j

=max
τ∈T

〠
ι

ν=κ+1
Yν τð Þ

�����
�����

≤max
τ∈T

L−1
p

1
sq

Lp 〠
ι

ν=κ+1
M Yν−1 τð Þð Þ +N Yν−1 τð Þð Þð Þ

" #" #�����
�����

=max
τ∈T

L−1
p

1
sq

Lp 〠
ι−1

ν=κ
M Yν τð Þð Þ +N Yν τð Þð Þð Þ

" #" #�����
�����

≤max
τ∈T

L−1
p

1
sq

Lp M Y ι−1ð Þ −M Yκ−1ð Þð½
�����

+N Y ι−1ð Þ −N Yκ−1ð ÞÞ �
�����

≤C1 max
τ∈T

L−1
p

1
sq

Lp Y ι−1 −Yκ−1ð Þ½ �
� �����

����
+C2 max

τ∈T
L−1

p

1
sq

Lp Y ι−1 −Yκ−1ð Þ½ �
� �����

����
= C1 +C2ð Þ τq

ℾ 1 +q½ � Y ι−1 −Yκ−1k k:

ð17Þ

Let ι = κ + 1, we have

Yκ+1 −Yκk k ≤C Yκ −Yκ−1k k ≤C2 Yκ−1 −Yκ−2k k ≤⋯≤Cκ Y1 −Y0k k,
ð18Þ

where C = ðC1 +C2Þðτq/ℾ ½1 +q�Þ. In the same vein,

Y ι −Yκk k ≤ Yκ+1 −Yκk k + Yκ+2 −Yκ+1k k+⋯+ Y ι −Y ι−1k k
≤ Cκ +Cκ+1+⋯Cκ−1	 


Y1 −Y0k k
≤Cκ 1 −C ι−κ

1 −C

� �
Y1k k:

ð19Þ

Since 0 <C < 1, we get 1 −C ι−κ < 1.

Y ι −Yκk k ≤ Cκ

1 −C
max
τ∈T

Y1k k: ð20Þ

Since kY1k <∞, kY ι −Yκk⟶ 0 as κ⟶∞; hence,
Y ι is a Cauchy sequence, and then, the series is convergent.

5. Test Examples

Example 1. We first start with the Riccati equation [24]:

D
q,p
0 Y τð Þ = 2Y τð Þ −Y2 τð Þ + 1, 0 <q ≤ 1, τ > 0, ð21Þ

subject to Yð0Þ = 0.

Take the p-Laplace transform, we obtain

Lp Y τð Þ½ � = 1
sq+1 + 1

sq
Lp 2Y τð Þ −Y2 τð Þ� �

: ð22Þ

Applying the inverse p-Laplace transform, we have

Y τð Þ = τqp

pqℾ q + 1½ � +L−1
p

1
sq

Lp 2Y τð Þ −Y2 τð Þ� �� �
:

ð23Þ

Therefore,

〠
∞

n=0
Yn τð Þ = τqp

pqℾ q + 1½ � +L−1
p

1
sq

Lp 2〠
∞

n=0
Yn τð Þ − 〠

∞

n=0
N n

" #" #
,

ð24Þ

where the nonlinear term Y2ðτÞ =∑∞
n=0N n.

We define the following recursively formula:

Y0 τð Þ = τqp

pqℾ q + 1½ � ,

Yn+1 τð Þ =L−1
p

1
sq

ℓq 2Yn τð Þ −N n½ �
� �

, n ≥ 0:
ð25Þ

This gives

Y0 τð Þ = τqp

pqℾ 1 +q½ � ,

Y1 τð Þ = 2τ2qp

p2qℾ 1 + 2q½ � −
ℾ 1 + 2q½ �τ3qp

p3qℾ 2 1 +q½ �ℾ 1 + 3q½ � ,

Y2 τð Þ = 4τ3qp

p3qℾ 1 + 3q½ � −
2ℾ 1 + 2q½ �τ4qp

p4qℾ 2 1 +q½ �ℾ 1 + 4q½ �
−

4ℾ 1 + 3q½ �τ4qp

p4qℾ 1 +q½ �ℾ 1 + 2q½ �ℾ 1 + 4q½ �
+ 2ℾ 1 + 2q½ �ℾ 1 + 4q½ �τ5qp

p5qℾ 3 1 +q½ �ℾ 1 + 3q½ �ℾ 1 + 5q½ � ,

⋮ ð26Þ
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Therefore, the series solution is given by

Y τð Þ = τqp

pqℾ 1 +q½ � +
2τ2qp

p2qℾ 1 + 2q½ �
−

ℾ 1 + 2q½ �τ3qp

p3qℾ 2 1 +q½ �ℾ 1 + 3q½ � +
4τ3qp

p3qℾ 1 + 3q½ �

−
2ℾ 1 + 2q½ �τ4qp

p4qℾ 2 1 +q½ �ℾ 1 + 4q½ � −
4ℾ 1 + 3q½ �τ4qp

p4qℾ 1 +q½ �ℾ 1 + 2q½ �ℾ 1 + 4q½ �

+ 2ℾ 1 + 2q½ �ℾ 1 + 4q½ �τ5qp

p5qℾ 3 1 +q½ �ℾ 1 + 3q½ �ℾ 1 + 5q½ �+⋯:

ð27Þ

The solution is given by Equation (27), when p = 1,
q = 1 is similar to the exact solution provided by

Y τð Þ = 1 +
ffiffiffi
2

p
tanh

ffiffiffi
2

p
t + 1

2 log
ffiffiffi
2

p
− 1ffiffiffi

2
p

+ 1

 !" #
: ð28Þ

In Table 1, we exhibit the numerical solutions of Equa-
tion (21), obtained by the p-Laplace decomposition
method when p = 1,q = 1. Table 2 displays the numerical
results obtained by the p-Laplace decomposition method
to the fractional Riccati Equation (21) for several values
of p and q. We plot the approximate solution and exact
solution of Riccati Equation (21) in Figure 1. In Figure 2,
we plot the approximate solutions to Equation (21) with
different values of p and q. From Table 1 and Figure 1,
we can deduce that the Y-approximate solution of Equa-
tion (21) is nearly identical to the Y-exact solution (28).
Table 2 and Figure 2 show that for different values of p
and q the solutions have the same behavior.

Example 2. In the last problem, we discuss the fractional
Chen system [24]:

D
q,p
0 x τð Þ =d y τð Þ −x τð Þð Þ, ð29Þ

D
q,p
0 y τð Þ = f−dð Þx τð Þ −x τð Þz τð Þ +fy τð Þ, ð30Þ

D
q,p
0 z τð Þ =x τð Þy τð Þ − ℯz τð Þ, ð31Þ

subject to xð0Þ =a, yð0Þ = b, and zð0Þ = c, where d,ℯ,
f∈ℝ, t > 0, 0 <q ≤ 1.

Solution. Applying the p-Laplace transform to Equation
(29) and substituting the initial conditions, we have

Lp x τð Þ½ � = a

s
+ d

sq
Lp y τð Þ −x τð Þ½ �, ð32Þ

Lp y τð Þ½ � = b

s
+ 1
sq

Lp f−dð Þx τð Þ −x τð Þz τð Þ +fy τð Þ½ �,
ð33Þ

Lp z τð Þ½ � = c

s
+ 1
sq

Lp x τð Þy τð Þ − ℯz τð Þ½ �: ð34Þ

Taking L−1
p to Equation (32), we get

x τð Þ =a +L−1
p

d

sq
Lp y τð Þ −x τð Þ½ �

� �
,

y τð Þ = b +L−1
p

1
sq

Lp f−dð Þx τð Þ −x τð Þz τð Þ +fy τð Þ½ �
� �

,

z τð Þ = c +L−1
p

1
sq

Lp x τð Þy τð Þ − ℯz τð Þ½ �
� �

:

ð35Þ

Table 1: Numerical results of the Riccati equation in Example 1.

τ Y-approximate Y-exact Absolute error

0.1 0:1102680000 0:1102951969 0:00002719692
0.2 0:2416426667 0:2419767996 0:00033413295
0.3 0:393924 0:3951048487 0:00118084866
0.4 0:565632 0:5678121663 0:00218016629
0.5 0:7541666667 0:7560143934 0:00184772676

Table 2: Numerical results of the Riccati equation for various
values of p and q.

τ p = 0:9,q = 1 p = 0:75,q = 0:95 p = 1:2,q = 0:9
0.2 0:3321562273 0:6242722905 0:1829684851
0.4 0:7290020600 1:1880854973 0:4535900161
0.6 1:1701070672 1:6946267332 0:8013841691
0.8 1:6131205961 2:1013183873 1:2035596201
1 2:0126222854 2:3786954138 1:6223167380

0.2
Exact
Approx

0.5

1.0

1.5

0.4 0.6 0.8 1.0

Figure 1: A comparison of the exact solution and three terms’
approximate solution when p = 1,q = 1.
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Therefore,

〠
∞

n=0
xn τð Þ =a +L−1

p

d

sq
Lp 〠

∞

n=0
yn τð Þ − 〠

∞

n=0
xn

" #" #
,

〠
∞

n=0
yn τð Þ = b +L−1

p

1
sq

Lp f−dð Þ〠
∞

n=0
xn τð Þ − 〠

∞

n=0
An

" #
+ f〠

∞

n=0
yn τð Þ

" #
,

〠
∞

n=0
zn τð Þ = c +L−1

p

1
sq

Lp 〠
∞

n=0
Bn τð Þ − ℯ 〠

∞

n=0
zn

" #" #
:

ð36Þ

The nonlinear terms are given by xðτÞzðτÞ =∑∞
n=0An

and xðτÞyðτÞ =∑∞
n=0Bn.

The terms of the solution are given by

x0 τð Þ =a, ð37Þ

y0 τð Þ = b, ð38Þ

z0 τð Þ = c, ð39Þ

xn+1 τð Þ =a +L−1
p

d

sq
Lp yn τð Þ −xn½ �

� �
, n ≥ 0, ð40Þ

yn+1 τð Þ = b +L−1
p

1
sq

Lp f−dð Þxn τð Þ −An½ � +fyn τð Þ
� �

, n ≥ 0,

ð41Þ

zn+1 τð Þ = c +L−1
p

1
sq

Lp Bn τð Þ − ℯzn½ �
� �

, n ≥ 0:

ð42Þ
This gives

0.2

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0

(a) q = 0:7
0.2

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0

(b) q = 0:9
0.2

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0

(c) q = 1

Figure 2: Plots of approximate solutions for Example 1, when p = 0:8 (dashed), p = 1 (red), and p = 1:2 (thick).

x0 τð Þ =a,
y0 τð Þ = b,
z0 τð Þ = c,

x1 τð Þ = dτqp b −a½ �
pqℾ q + 1½ � ,

y1 τð Þ = τqp f−dð Þa −ac +fb½ �
pqℾ q + 1½ � ,

z1 τð Þ = τqp ab − cℯ½ �
pqℾ q + 1½ � ,

x2 τð Þ = dτ2qp fa −ac − d −fð Þb½ �
p2qℾ 2q + 1½ � ,

y2 τð Þ = τ2qp −a2b +f2 a + bð Þ − bd c +dð Þ +a ℯc +d c +dð Þð Þ +f bd −a c + 2dð Þð Þ� �
p2qℾ 2q + 1½ � ,

z2 τð Þ = τ2qp db −a + bð Þ + ℯ −ab + ℯcð Þ +a −da +f a + bð Þ −acð Þ½ �
p2qℾ q + 1½ � ,

⋮

ð43Þ
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Therefore, the series solution is as follows:

We have displayed 7-term solution points of the Chen
system (29) for p = 1, q = 1, ða, b, cÞ = ð−10, 0, 37Þ, and
ðd, ℯ,fÞ = ð35, 3, 28Þ. The numerical outcomes obtained
are presented in Table 3.

6. Conclusion

In this research, we effectively used the p-Laplace decompo-
sition approach to provide an approximate solution for
initial value problems with generalized fractional derivatives.
We tested the strategy in two different situations. The results
revealed that the technique is exceedingly successful with a
small number of calculations and is devoid of any lineariza-
tion, perturbations, discretization, or restrictive assump-
tions. In addition, it is established that the findings
obtained in the series form have a higher rate of convergence
to the exact results. This approach can be used to solve
various fractional PDEs.
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