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ABSTRACT 

This paper proposes the design and a comparative study of two nonlinear systems modeling techniques. These two ap- 
proaches are developed to address a class of nonlinear systems with time-varying parameter. The first is a Radial Basis 
Function (RBF) neural networks and the second is a Multi Layer Perceptron (MLP). The MLP model consists of an 
input layer, an output layer and usually one or more hidden layers. However, training MLP network based on back 
propagation learning is computationally expensive. In this paper, an RBF network is called. The parameters of the RBF 
model are optimized by two methods: the Gradient Descent (GD) method and Genetic Algorithms (GA). However, the 
MLP model is optimized by the Gradient Descent method. The performance of both models are evaluated first by using 
a numerical simulation and second by handling a chemical process known as the Continuous Stirred Tank Reactor 
CSTR. It has been shown that in both validation operations the results were successful. The optimized RBF model by 
Genetic Algorithms gave the best results. 
 
Keywords: Nonlinear Systems; Time-Varying Systems; Multi Layer Perceptron; Radial Basis Function; Gradient  
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1. Introduction 

Neural networks are widely used in the characterization 
of nonlinear systems [1-7], time-varying time-delay non- 
linear systems [8] and they are applied in various appli- 
cations [9-12]. 

The system may be with invariant parameters or time- 
varying parameters. The variation of some system may 
be such as; system with slow time-varying parametric 
uncertainties [13,14], with arbitrarily rapid time-varying 
parameters in a known compact set [15], with rapid time- 
varying parameters which converge asymptotically to 
constants [16], and with unknown parameters with arbi- 
trarily fast and nonvanishing variations [17].  

Using MLP architecture depends on various parame- 
ters, for instance the number of hidden layers, the num- 
ber of neurons in each hidden layers, the activation func- 
tion and the learning rate. These parameters present a 
difficulty to find the suitable architecture of the MLP. 

A renewed interest in Radial Basis Function (RBF) 
neural network has been found in recent years in various 
application areas such as modeling and control [1-2], 
pattern recognition [18] identifying malfunctions of dy- 
namical systems in the case of the frequency multiplier 
[19], and in the case of jump phenomenon [20], deter- 
mining the optimal choice of machine tools [21], pre- 

dicting 2D structure of proteins [22], classification [23, 
24], solving systems of equations [25], analysis of the 
interaction of multi-input multi-output [26] and modeling 
of robots [27]. 

Using an RBF leads to a general model structure is 
less complex than that produced by an MLP network. 
The computational complexity induced by their learning 
is less than that induced by learning the MLP networks. 
The RBF network performance depends, to a choice of 
activation function [1], the number of hidden neurons 
and synaptic weights. By the time-varying nature of pa- 
rameters the RBF methods are not applicable. However, 
the RBF is well used in invariant-system. The MLP is 
used in estimation of time-varying time-delay nonlinear 
system [17]. In this work, we investigate the possibility 
of extending the well conventional methods to model a 
nonlinear system in presence of time-varying parameters.  

Several methods such as iterative methods [28-32] 
with the gradient descent method and evolutionary algo- 
rithms [32] that genetic algorithms are used in this paper 
to optimize the structure and determine the parameters of 
the RBF model. On the other hand, the gradient descent 
method is used to optimize the MLP network [33]. 

This paper focuses on the optimization of radial basis 
functions architecture, and compares it to the MLP ar- 
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chitecture. The proposed algorithms are applied to time- 
varying nonlinear systems. The RBF using genetic algo- 
rithms gave the best results. 

This paper is organized as follows. Nonlinear system 
modeling by MLP and RBF network is presented at the 
second and the third section. A comparative study be- 
tween the MLP and RBF model, applied to two examples 
of nonlinear systems is presented in the forth section. 
Conclusions are given in the fifth section. 

2. Nonlinear System Modeling by MLP 

Modeling a nonlinear system from its input-output can be 
for several models. Among these models, the NARMA 
(Nonlinear Auto-Regressive Moving Average) [19] is 
used; its expression is given by the following equation: 

 
        
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where f  is a nonlinear mapping,  and  u k  y k  
are the input and output vector, u  and N yN  are the 
maximum input and output lags, respectively. In this 
paper, the coefficients of the model (1) depend on time.  

The used MLP in this paper is to describe the nonlin- 
ear system (1). The objective of the modeling is to obtain 
an MLP that its output follows the output of the system. 

2.1. Structure of MLP 

The multilayer perceptron network consists of an input 
layer, an output layer and usually one or more hidden 
layers. Figure 1 shows the architecture of MLP network 
employed for modeling a nonlinear system. It has an in- 
put layer of 0  neurons,  hidden layers, each hidden 
layer contains i  neurons and one neuron in the only 
output layer. The sigmoid activation function, 

n
n

L

s , is 
used. 

For the nonlinear system (1), if no knowledge about 
the structure of the nonlinearity of the system is available 
such system is considered as a “black box” system mo- 
deling. 

The output of MLP model  is given by the 
following equation:  
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where s  is a sigmoid activation function,  yr k
(2)

 is the 
output vector of MLP. 

1L
, 

p
, ( 1)Lw  (3)

q
w

pj
 and w (1)

ji
 

are the synaptic weights of MLP. 
w

ix  is the input vector 
of MLP.  

2.2. Optimization of MLP  

Among the optimization methods of MLP, the gradient 
descent method is used in this paper. Optimization of the 
MLP is to minimize the mean square error E. 
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where  is a function cost.  E
In this section, 2 hidden layers are taken into account 

with a single input layer and one output layer, the result 
of optimization is given by Equations (4) to (10):  
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Figure 1. Multilayer perceptron feedforward neural network (MLP). 
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3. Nonlinear System Modeling by RBF  

As we did with the MLP model, the RBF is used to de- 
scribe the nonlinear system (1). 

3.1. Structure of RBF  

The RBF consists of only three layers; an input layer, an 
output layer and usually one hidden layers contains a 
hidden radial basis function. The RBF model calculates a 
linear combination of radial basis functions as is given by 
the following equation: 
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where  ym k  is the output vector of RBF. jv  is the 
synaptic weights of RBF and j  is a Gaussian activa- 
tion function: 
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3.2. Optimization Methods of RBF  

Compared to the MLP, the RBF contains a very small 
number of parameters. The purpose of optimizing RBF is 
to determine j , j  and jv  by minimizing the func- 
tion cost . E
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In order to find the minimum of j , j  and jv  
two strategies are proposed in the literature for finding 
the minimum of . The first is based on supervised 
methods or algorithms using direct time-consuming cal- 
culation to determine the minimum of . The second 
adopts a hybrid scheme (less costly in computation time) 
to determine the minimum of . Solving these prob- 
lems can be by various methods such as iterative meth- 
ods (the Gradient Descent method) and evolutionary al- 
gorithms (Genetic Algorithm). 

E

E

E

3.2.1. Optimization of RBF Using Gradient Descent  
The principle of the GD method is applied to optimize 
the parameters of the RBF model. It uses the rules of 
delta: 
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Hence the calculation of partial derivatives introduced 
by the following equations: 
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finally, we obtain 
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The learning rate i  satisfies the following condition: 

0 1    1,2i i ,3              (23) 

E  is nonlinear in the parameters, which calls for 
finding the minimum, the use of an iterative algorithm 
that requires an arbitrary initialization of RBF network 
parameters and a suitable choice of i . To maximize the 
chances of finding the global minimum of , several 
initialization parameters and therefore more training is 
needed, which increases the computing time. 

E

Another method is to optimize separately the parame- 
ters of the hidden layer (the centers   and the widths 
 ) by genetic algorithms and the synaptic weights be- 
tween the hidden layer and output layer by the gradient 
descent method. 

3.2.2. Optimization of RBF Using Genetic Algorithms  
The genetic algorithm is an optimization algorithm based 
on techniques derived from genetics and natural evolu- 
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tion: crossover, mutation, selection. The GA is often used 
for optimization of RBF [34-38].  

In this paper, the GA is used in order to optimize sep-
arately the parameters of the hidden layer (the centers   
and the widths  ) of the RBF model. 

To find suitable parameters, five elements of GA are 
called: 
 A population is generated randomly. The population 

size is chosen to achieve a compromise between com- 
putation time and solution quality.  

 The evaluation of each individual is performed by an 
evaluation function called fitness function. This func- 
tion represents the only link between the physical 
problem and GA. In this paper, the used fitness func- 
tion is given by the following equation. 

2 2
1 2 1sin 0.9 g x x x              (24) 

with 1x  and 2x  are respectively the   and the   
which are used also in the following equation:  
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 Once the evaluation of generation is realized, it makes 
a selection from the fitness function. In this paper, the 
tournament selection is used.  

 The crossover operator is designed to enrich the di- 
versity of the population by manipulating the genes of 
individuals existing in the population. In the other 
hand, the mutation operator involves the inversion of 
a bit in a chromosome. The mutation that mathemati- 
cally guarantees the global optimum can be reached.  

 The stopping criterion indicates that the solution is 
sufficiently approximate the optimum. In this paper, 
the maximum number of generations is chosen as 
stopping criterion.  

Figure 2 shows the organization of GA to find the mi-
nimal parameters of the hidden layer. 

The obtained parameters (  , ) by GA are used also 
in the following equation: 
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and the synaptic weights are calculated using the gradient 
descend method: 

     
1

1
1

1
n

j j j
j

v k v k y k v j j  


 
    

 
     (27) 

4. Comparative Study of Models  

The effectiveness of the suggested methods applied to  
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Figure 2. Organization of genetic algorithm. 
 
the identification of behavior of two nonlinear time- va-
rying systems are demonstrated by simulation experi- 
ments. 

The performance of MLP and RBF models are evalu- 
ated by Normalized root Mean Square Error between the 
system output and the model output, denoted . NMSE
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and 
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4.1. Nonlinear Time Varying-System  

We consider the nonlinear time-varying system described 
by input-output model: 

 
            

       2 2
0 1

1

1 2 1 2 1

1 1 2

y k

y k y k y k u k y k u k

a k y k a k y k



     


   

  

(30) 

with: 
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The trajectory of  0a k  and  1a k  are given in 
Figure 3. 

The input  u k  is sinusoidal signal and it is defined 
by the following equation:  
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Figure 3. a0(k) and a1(k) trajectories. 
 

    0.325sin 0.95 cos 0.55u k k k          (32) 

In Figure 4, the time-varying system responses, the 
MLP model and the optimized RBF model by the GD 
method are presented. In this simulation figure, the MLP 
parameters are 0 , 1 ,  and  6n  15n  2 20n 

0.44  . The obtained MLPE

1 0.3
NMS  is . 

However, the RBF parameters are 

32.78 10 %
4  , 2 0.01   

and 3 0.002  . The obtained RBFNMSE  is  
.  3%3.9812 10

In Figure 5, the time-varying system responses, the 
MLP model and the optimized RBF model by GA are 
illustrated. In this simulation the same MLP parameters 
are taken, while the RBF parameters are 1 0.172  , 

,  and 0.7Pc  0.1Pm  100T  . The obtained  

RBF

In these two Figures (4 and 5), it is clear that the re-
sponses of MLP and RBF models follow the system re-
sponse although the variation of parameters. 

NMSE  is .  310 %2.02

In one hand, the obtained MLP model is found by sev-
eral tests of parameters and of learning. The large num-
ber of MLP parameter increases the difficulty of its use. 
However, the simplicity of RBF makes modeling is sim-
ple and takes much less training time. 

In Figure 4, the optimized RBF model by the gradient 
descent method depends on an expensive time of training 
and depends on different learning rate ( 1 0.34  ,  

2 0.01   and 3 0.002  ) while, in Figure 5, the pa-
rameter of RBF model (   and  ) are finding sepa-
rately by the GA and the synaptic weights ( ) by the DG 
method, hence the model is faster than the previous. 

v

Noise Effect of Time-Varying Nonlinear System  
To validate the quality of the proposed algorithm, an 
added white noise is used. The influence of the noise of 
modeling, the Signal Noise Ratio (SNR) is used. The 

Figures 6(a)-(c) present the  evolution of dif-
ferent SNR for the both models.    
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where y  and   are respectively the output average 
value and noise average value. 
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Figure 4. The responses of time-varying system, MLP mo- 
del and the optimised RBF model by GD. 
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Figure 5. The responses of time-varying system, MLP mo- 
del and the optimised RBF model by GA. 
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Figure 6. Evolution of MSE of different SNR: (a) MLP; (b) 
Optimized RBF model with GD method; (c) Optimized RBF 
model with GA. 
 

In these three Figures 6(a)-(c), we remark firstly the 
error goes down when the SNR value goes high, then the 
lowest MSE is obtained when the GA is used (Figure 
6(c)). Finally, in these all figures we see that the re- 
sponses of MLP and RBF models follow the time-vary- 
ing system response despite of the variation of parame- 
ters and an added noise. 

4.2. Chemical Reactor  

To test the effectiveness of the MLP and RBF models we 
test them on a Continuous Stirred Tank Reactor, CSTR, 
which is a type of slowly time-varying nonlinear system 
used for the conduct of the chemical reactions [39-41]. 
However, the input-output are used in discrete time. A 
diagram of the reactor is given in the Figure 6. The 
physical equations describing the process are (34) and 
(35): 
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where  h t  is the height of the mixture in the reactor, 
 1w t  (respectively  2w t

C

) is the feed of reactant 1 
(respectively reactant 2) and 1b  (respectively 2b ) is 
the concentration of reactant 1(respectively reactant 2). 

 is the feed product of reaction and its concentration is 

b . 1 , 2 , 2  and 2b  are consumption reactant 
rate. They are assumed to be constant. The temperature 
in the reactor is assumed constant and equal to the ambi- 
ent temperature. The feed of reactant 1  and the con- 
centration 1b  are the input of the process however b  
represents its output. A diagram of the reactor is given in 
the Figure 7. 

C C

w
C k k

C

w

w
C

For the purpose of the simulations the CSTR model of 
the reactor provided with Simulink-Matlab is used.  

In Figure 8, the responses of the chemical reactor, the 
model that produced by MLP and optimized RBF model 
by the gradient descent method are presented. In Figure 
9, the responses of the chemical reactor, the MLP model 
and the optimized RBF model by genetic algorithms are 
illustrated.  

In Figures 8 and 9, the responses of the optimized 
RBF model by the GD method and MLP model follow 
the response of chemical reactor. Indeed, in Figure 8, the 
MLP model is carried out with 5 neurons in input layer, 
25 neurons in first hidden layer, 22 neurons in hidden 
layer and the learning rate equal to 0.4. However, the 
RBF model depends only 3 layers, the second and the 
only hidden layer contains 11 neurons. The used para- 
meters in the GD method are 1 0.37  , 2 0.003   
and 3 0.02  . In contrary, in Figure 9, the parameter of  
 
w1: Feed of reactant 1 
Cb1: Concentration of reactant 1

w2: Feed of reactant 2 
Cb2: Concentration of reactant 2

w: Feed Product  
Cb: Product Concentration

h

 

Figure 7. Chemical reactor diagram. 
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Figure 8. The responses of process, MLP model and the op- 
timized RBF model by GD. 
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Figure 9. The responses of process, MLP model and the op- 
timized RBF model by GA. 

 
RBF model are optimized separately (   and  ) using 
GA and ( v ) using gradient descent. These parameters are 

1 0.11  , ,  and . 0.8Pc  0.2Pm  100T 
The NMSE is given in the table below: 
 

- MLP RBF + GD RBF + GA 

NMSE (%) 1.45e−003 5.97e−002 2.50e−002 

 
From this table, the NMSE computed in the RBF mod-

el optimized by the genetic algorithms method is lower 
than that found by applying the gradient descent method 
which proves that the evolutionary algorithms give good 
accuracy for modeling methods of dynamical systems. 

5. Conclusion  

This paper has dealt with the study and the comparison 
of two systems modeling techniques the multilayer net-
work model and the radial basis function neural network 
model. These two approaches are applied in a class of 
nonlinear system with time-varying parameters. It has 
been shown that the MLP architecture depends on vari- 
ous parameters and of course a much training time. 
However, the RBF model depends on the synaptic weights, 
center and width of its function. In this paper, the RBF 

model is optimized by gradient descent method and ge- 
netic algorithms. Each optimized RBF models are com- 
pared with multilayer perceptron. Mean square error is 
carried out to evaluate performance of both models and 
the influence of an additive noise on the identification 
qualities. These models have been tested for modeling of 
chemical reactor and results are successful. The RBF 
model optimized by genetic algorithms showed good 
performance compared to that optimized by gradient de- 
scent method. 
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Nomenclature  : learning rate,   
 : regularization coefficient,   y k : process output, 

 u k  ym k : output of RBF,  
: process input,  

f
: hidden radial basis function,  

: unknown function,  j
: hidden center,  

yN : output delay,  j
: hidden width,  

u


N : input delay, , u yN N j

vyr k : output of MLP,  
x

j : synaptic weights of RBF, 
Pc : crossover probability,  

: input vector of (MLP or RBF),  
Pm : mutation probability,  

L : number of hidden layer,  
T : size generation, 

0n
n

: number of nodes of input layer,   : white noise,  
i

n
: number of nodes of hidden layer,  

N : number of observations, 
: number of nodes of output layer,  

SNR: Signal Noise Ratio. 
w : synaptic weights of MLP,  
s : activation function,  
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