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ABSTRACT 
Finite Element (FE) analysis has become the favoured tool in the tyre industry for virtual development of tyres 
because of the ability to represent the detailed lay-up of the tyre carcass. However, application of FE analysis in 
tyre design and development is still very time-consuming and expensive. Here, the application of various Artifi-
cial Neural Network (ANN) architectures to predicting tyre performance is assessed to select the most effective 
and efficient architecture, to allow extensive parametric studies to be carried out inexpensively and to optimise 
tyre design before a much more expensive full FE analysis is used to confirm the predicted performance. 
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1. Introduction 
The vehicle tyre, in its interaction with the road, gener-
ates the forces and moments which control vehicle mo-
tion. Of particular importance are the tyre radial force 
which controls vehicles ride behaviour, longitudinal force 
which controls acceleration/braking and lateral force which 
controls cornering and directional stability. These forces 
are functions of tyre dynamic characteristics and result 
from deformation of the tyre due to tyre/road interaction. 
Static stiffness, determined by measuring its elastic de-
formation and contact patch information is one of the 
important mechanical properties of a tyre [1]. Since this 
and other performance characteristics are dependent on 
the detailed design configuration of the tyre, there is in-
creasing use of virtual prototyping tools such as finite 
element (FE) analysis in the design and development of 
new tyre products to evaluate different tyre design con-
figurations. 

Kazuyuki Kabe and Masataka Koishi [2] investigated 
tyre cornering behaviour by both implicit and explicit 
finite element analysis considering the modelling details 
of tyre composite structure and nonlinear material prop-
erties. The simulation results were verified using a flat-  

trac tyre test system. O. A. Olatunbosun and A. M. Burke 
studied the tyre dynamic behaviour in the time domain 
by finite element analysis for better understanding of tyre 
ride response [3]. P. Ghosh et al. carried out a study on 
the effect of tyre design parameters on tyre performance 
for optimizing tyre configuration [4]. From the aforemen-
tioned studies on finite element tyre modelling, it has 
been shown that a finite element tyre model can provide 
data, not only for comparison to measured test data, but 
also data that are impractical to measure, and are thus an 
efficient alternative to the conventional design, build and 
test method of developing tyre prototypes. 

Further efficiencies can be gained in the development 
of tyre prototypes by reducing the computational cost of 
finite element analysis through the application of artifi-
cial intelligence technology such as artificial neural net-
work (ANN). The ANN based method has been used 
widely in different research fields in the past decades, 
such as modelling complex systems [5], fault detection 
and diagnosis [6] and sales forecasting [7], etc. The use 
of artificial intelligence based methods in tyre design is a 
recent development. For example, a fuzzy logic based 
method was developed and applied for evaluating tyre  
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dynamic parameters such as tyre contact area, cornering 
stiffness, and tyre-road friction coefficient for application 
in vehicle control systems [8]. ANN based methods have 
also been proposed for estimating tyre/road friction force 
[9] for predicting tyre handling performance [10], and for 
modelling tyre failure rate [11]. 

Olatunbosun et al. [12] investigated the application of 
a tyre virtual prototyping environment, combining FE ana- 
lysis and ANN technology, to investigate the effect of 
tyre belt ply design configuration parameters on tyre sta- 
tic stiffness and tyre/road contact characteristics. Such an 
ANN model can be employed in the initial evaluation 
and rapid optimisation of new tyre designs before more 
expensive FE analysis is used to confirm the predicted 
performance. 

The current paper gives a detailed exposition of the 
development of the ANN model, with consideration of 
four different ANN structures and comparison of their 
performance in terms of accuracy and cost. The ANN 
model was trained using test data generated from a vali-
dated finite element tyre model developed using the 
commercial finite element software ABAQUS™. This 
allowed the tyre belt reinforcement cords to be modelled 
in detail. Using different tyre belt design configurations, 
a large number of different tyre designs were created and 
their performance characteristics obtained by FE simula-
tion. The tyre design parameters were the input data and 
the tyre performance parameters obtained from the vir-
tual tests were the output data used to train the ANN tyre 
model. Once trained, the ANN model would provide a 
reliable, fast and efficient tool for predicting the per-
formance characteristics of new tyre designs with differ-
ent belt configurations without having to use FE analysis. 

Such an ANN model can be employed in the initial 
evaluation and rapid optimisation of new tyre designs 
before more expensive FE analysis is used to confirm the 
predicted performance. 

2. Tyre Material Properties 
As a composite structure, tyres have complex character-
istics due to their diverse material properties and com-
plex structure. Generally, the tyre is constructed using 
high modulus cord and low modulus rubber. Several lay-
ers of cord spaced in the rubber act as the reinforcing 
frame of the tyre. The reinforcement layers enveloped by  

the rubber exhibit highly nonlinear stress-strain behav-
iour. 

This study is based on a slick radial tyre 175/505 R13 
for SAE Formula Student (FS). Currently, over one hun-
dred FS racing teams are using different makes of tyre, 
such as Dunlop, Goodyear, and Hoosier. These tyres 
usually work under relatively low pressure and load. The 
growing popularity of FS makes the competition keener 
and has forced the FS teams to strive for higher per-
formance of their cars. As a cornerstone of FS racing car 
design, the tyres’ characteristics are now being paid more 
attention and have resulted in taking up to two seconds 
off the lap time during competition [13]. 

The tyre consists of different rubber components with 
embedded reinforcements. The dominant component of 
the tyre is rubber including tread, under-tread, sidewall, 
apex, and the inner-liner. The reinforcement of the tyre 
includes the belt, carcass, bead, cap ply, and bead rein-
forcement. The rubber material properties for different 
components such as tread and sidewall are not identical 
due to the different mixed proportions of rubber and car-
bon black [14]. The function of tread rubber is to keep 
the balance of tyre performance and durability, while the 
sidewall rubber is designed mainly for fatigue resistance. 

The availability of accurate knowledge of a tyre’s con-
stituent material properties is vital for constructing a FE 
model capable of representing the behaviour of the tyre 
accurately. However, tyre material properties are usually 
not available to most researchers due to the proprietary 
protection from the tyre manufacturers. The material 
properties for the tyre were determined using techniques 
developed by Yang et al. [15]. 

Based on a series of uni-axial tests and evaluations 
using ABAQUS, the Yeoh hyperelastic model constants 
for different rubber components were obtained and listed 
in Table 1. 

In ABAQUS, the viscoelastic material property should 
be considered together with the hyperelastic model to 
define large-deformation, nonlinear, viscoelastic behav-
iour. Likewise, the viscoelastic material model must be 
combined with the isotropic linear elasticity model to 
define classical, linear, small-strain, viscoelastic behav-
iour. The normalised relaxation test data (Table 2) were 
utilised to evaluate the Prony series parameters in 
ABAQUS as described in [15]. 

 
Table 1. Hyperelastic Material Constants [15]. 

Rubber Material Yeoh strain energy potentials constants 
Component C10 (N/mm2) C20 (N/mm2) C30 (N/mm2) 

Tread 0.1714 −4.4041E−02 1.7383E−2 
Sidewall 0.2933 −8.6149E−02 3.7144E−02 

Apex 1.7245 −2.2922 5.0544 
Inner-liner 0.3223 −8.6751E−02 2.4762E−02 
Toeguard 3.3175 4.7823 63.5242 
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Table 2. Viscoelastic material constants [15]. 

Rubber Material Relaxation Modulus (g) Relaxation Time (τ), sec. 
Component g1 g2 τ1 τ2 

Tread 0.1433 0.0852 7.6125 235.62 
Sidewall 0.1613 0.0773 6.2257 224.29 

Inner-liner 0.1017 0.0839 19.6480 363.70 
Apex 0.1815 0.1197 3.5618E−02 206.28 

Toeguard 0.1171 0.0891 21.2580 350.13 
 

In ABAQUS, the reinforcements are modelled using 
rebar elements embedded into the rubber matrix. In this 
way, the reinforcement component and the host compo-
nent (rubber) are described in different constitutive mod-
els. The material properties can be assigned to their cor-
responding component, separately. 

Since the deformation of cords/steel wire during tyre 
inflation and deflection produces significantly smaller 
strains compared to rubbers, the material properties of 
cords remain well within their linear elastic limits hence 
their non-linear material properties are not required. Thus, 
the Young’s modulus E and the Poisson’s ratio ν were 
used to define the material property of reinforcement 
cords. 

3. Finite Element Modelling 
The pneumatic tyre has a complex structure consisting of 
reinforcement plies and rubber components. In order to 
achieve successful prediction of tyre characteristics using 
FEA, an accurate 3D tyre model is crucial. Apart from 
the tyre material properties, the fundamental requirement 
for the tyre modelling process is precise and adequate 
information about tyre geometry. 

Finite element analysis is now widely used as a pow-
erful virtual simulation tool for tyre development because 
of its ability to model the detailed structure of a pneuma- 
tic tyre. Here, the tyre FE model used in the simulation 
experiment was developed in the commercial FE package 
ABAQUS to acquire data for training the ANN model. 

Once the tyre cross-section structure details were ob-
tained, the finite element model of cord-rubber compos-
ite was created in ABAQUS. In this study, the rebar layer 
function in ABAQUS provides the support for modelling 
cord as rebar element, which is embedded in rubber solid 
element. 

The rebar layer function in ABAQUS is used to define 
the cord orientation, spacing, thickness, location, and 
material properties that are independent of rubber mate-
rial properties definition. Material properties of different 
components obtained from tests were then applied to the 
model. The modelling procedure introduced in [14] was 
adopted in this study. A 2D axisymmetric tyre model was 
developed firstly by importing the 2D cross-section pro-
file shown in Figure 1 into ABAQUS/CAE. The hybrid  

 
Figure 1. Finite element model of tyre cross-section in 
ABAQUS. 

 
axisymmetric continuous elements with twist degree of 
freedom (CGAX4H and CGAX3H) were used to account 
for the twist feature of the cord along the axisymmetric 
axis due to anisotropy of fibre reinforcements [2]. Par-
ticularly, for the bead region, 2D axisymmetric hybrid 
element CGAX4H was used with steel property rather 
than embedding steel wire in rubber, which is effective 
and efficient. The reinforcement components were rep-
resented by the SFMGAX1 elements with 2 nodes, which 
were embedded in rubber elements in ABAQUS. One 
layer cap ply with 0 degree orientation (along the circum-
ferential direction), two layers breakers including one 
layer steel belt with 20 degree orientation and one layer 
nylon belt with −20 degree orientation, and two layers 
carcass with 90 degree orientation were modelled by 
rebar layer and embedded in the corresponding host solid 
elements. The element set and node set were created for 
different components for convenient operation in ABAQUS, 
such as assigning material properties and boundary con-
ditions, and post-processing. 

The 2D axisymmetric model was converted into a 3D 
finite element tyre model using the symmetric model 
generation function in ABAQUS. During this process,  
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the 2D axisymmetric elements (CGAX4H and CGAX3H) 
were transformed into 3D solid elements (C3D8H and 
C3D6H). The number of circumferential sections can be 
controlled for different analyses; for example, only the 
contact patch part of the tyre has refined mesh for steady 
state tyre rolling analysis. In this case, 50 × 6.0˚ circum-
ferential coarse sections and 20 × 3.0˚ refined sections 
for the contact patch respectively were created. 

This non-uniform mesh is appropriate not only to en-
sure accurate prediction but also low cost of computa-
tional time. The structure details such as the cord-rubber 
composite are still kept after revolving the 3D model. 

4. Virtual Tests on Pneumatic Tyre 
A number of virtual tests were carried out on the 3D FE 
tyre model including static load-deflection tests in the 
vertical, lateral, and longitudinal directions as well as 
tyre footprint analysis. These were then validated with 
tests on the tyre carried out on the University of Bir-
mingham tri-axial electro-hydraulic tyre dynamic rig. 

Results of the vertical stiffness validation are shown in 
Table 3 with tyre vertical stiffness determined at normal 
inflation pressure 80 kPa as well as at ±25% and ±50% 
for the tyre in its normal design configuration. 

Figure 2 shows footprint shape comparison between 
experiment and finite element analysis at normal infla-
tion pressure 80 kPa and normal vertical load 750 N. The 
variations of tyre footprint area, due to the variation of 
inflation pressure and vertical load for both virtual and 
physical experiments, are shown in Figures 3 and 4. 

It is evident that the tyre finite element model is capa-
ble of predicting the variations of the footprint area due 
to the changes of inflation pressure and vertical load. The 
trend of tyre contact area considering the variation of tyre 
inflation pressure and vertical load are consistent with 
the findings in [16] i.e. tyre footprint area increasing with 
increasing vertical load and decreasing inflation pressure. 

The validation results for the finite element model 
show that it is capable of accurately predicting tyre per-
formance characteristics. It therefore provides a reliable 
platform for investigating the tyre stiffness property. 

5. Methodology and Implementation 
5.1. Artificial Neural Networks (ANN) 
A detailed description of artificial neural networks and  

the principles of neural modelling is given in [12]. Fur-
ther details of the operational principles and the design of 
artificial neural networks can be found in standard text-
books e.g. Samarasinghe [17]. On the other hand, another 
important property of a neural network is its ability to 
learn complex nonlinear relationships between the inputs 
and outputs of the network [12]. This study takes advan-
tage of this property of a neural network and its ability to 
improve its performance through learning, just like the 
human brain. Here, the application of various ANN ar-
chitectures as the approximation tool for predicting tyre 
performance is assessed, including Multi-Layer Feed- 
forward Networks or Multi-Layer Perceptron (MLP), 
Co-Active Neuro-Fuzzy system (CANFIS), Radial-based 
Function (RBF) neural network, and generalised feed- 
forward MLP. A brief introduction of each network is 
presented as follows. 

Multi-Layer Perceptron (MLP) Neural Network: In the 
multilayer networks, there are one or more hidden layers, 
whose nodes are correspondingly called hidden neurons. 
The back-propagation learning algorithm network typi-
cally trains the network by employing the deviation of 
outputs from corresponding desired values to correct and 
update the weights of the previous layer [17]. 

Co-Active Neuro-Fuzzy Interface system (CANFIS): 
The CANFIS model combines fuzzy logic input with a 
modular neural network to estimate complex functions 
for obtaining higher accuracy along with lower calcula-
tion cost due to its reduced structure. In addition, human 
knowledge is not required since the CANFIS model 
learns training data set by optimising the fuzzy member-
ship function parameters with either error back-propaga- 
tion or genetic algorithm (GA) [18]. 

Radial-basis Function (RBF) Neural Network: Radial 
basis function (RBF) networks are nonlinear structures, 
similar to MLPs, but constructed of a single hidden layer. 
Gaussian transfer function is used in RBF networks in-
stead of the standard functions employed by MLPs. Since 
the learning in hidden layer is substituted by unsuper-
vised learning, the learning cost and problem size is 
smaller, and as a result, network training will be faster 
[19]. 

Generalised feed-forward MLP (GFMLP) Neural Net-
work: Generalised feed-forward networks are a generali-
sation of the MLP such that connections can jump over 
one or more layers [20]. The efficiency of this network is  

 
Table 3. Vertical stiffness validation. 

Inflation Pressure (kPa) Vertical Stiffness Test (N/mm) Vertical Stiffness Simulation (N/mm) Absolute Difference (%) 
40 51.181 51.439 0.50 
60 68.898 67.419 2.15 
80 84.786 82.813 2.33 

100 96.457 97.249 0.82 
120 112.02 112.34 0.29 
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(a) Footprint from “COPEN”                                    (b) Footprint from “CPRESS” 

 
(c) Footprint from Test 

Figure 2. Footprint shape comparison at inflation pressure 80 kPa and vertical load 750 N. 
 

 
Figure 3. Variation of footprint area with respect to vertical 
load at 80 kPa inflation pressure. 

 
effectively higher than MLP since the network flexibility, 
adaptability, and nonlinearity is sensibly stronger than in 
normal MLPs. 

 
Figure 4. Variation of footprint area with respect to infla-
tion pressure at 750 N vertical load. 

5.2. Data Acquisition 
Any artificial neural network requires to be trained with 
adequate data if it is to provide accurate prediction of the 
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desired outputs from the given inputs. In this case, the 
inputs are the tyre belt ply design configuration parame-
ters namely, cord orientation angle, spacing (cords end 
density), cross-sectional area, material property (Young’s 
modulus). In addition, the operational condition, inflation 
pressure was considered. 

The desired outputs are the tyre static stiffness prop-
erty (in the radial, longitudinal and lateral directions), 
contact patch area, contact pressure and shear stress in 
the belt plane. To provide the training data, the inde-
pendent input parameters were varied as shown in Table 
4 to create 243 samples (prototype tyres). ABAQUS in-
put decks were generated for each sample. Each input 
parameter was given a change of ±10% apart from infla-
tion pressure which was given a change of ±25% because 
of the lower sensitivity of output parameters to it. 

In the previous study [12], it was established that ANN 
technology could be applied to tyre design. Here the aim 
is to explore the efficiency and effectiveness of different 
ANN architectures in predicting tyre performance. This 
is achieved by comparing the tyre performance parame-
ters predicted by the trained neural networks of different 
architectures to those predicted by a validated finite ele-
ment model. 

The chosen outputs are typical tyre performance char-
acteristics in terms of both physical and micro-scale be-
haviour including vertical stiffness, Lateral stiffness, lon-
gitudinal stiffness, contact area, maximum contact pres-
sure, maximum shear stress #1 and maximum shear stress 
#2 (direction #1 refers to the direction of shear stress in 
lateral direction and direction #2 corresponds with the 
longitudinal direction. The macro-scale parameters (stiff-
nesses) are normally specified design parameters while 
the micro-scale parameters (maximum contact pressure 
and shear stresses) must be kept below specified limits to 
ensure operational safety of the tyre. 

5.3. Implementation 
To facilitate the training of an artificial neural network, 
the available data is normally split into two sets: one set 
for training and another for testing. A limited number of 
training data set were randomly reserved for the purpose 
of cross validation, so that over fitting can be monitored 
and avoided. The trained neural networks can then be 
validated using the data set reserved for cross validation 
and the robustness of the ANN models assessed. 

 
Table 4. Variation in input parameters of ANNs. 

Independent variables low normal high 
Orientation angle −10% 0% +10% 
Cords end density −10% 0% +10% 
Material property −10% 0% +10% 

Cords X-section area −10% 0% +10% 
Inflation pressure −25% 0% +25% 

In this paper, the aforementioned neural networks were 
developed using the Matlab/NN toolbox in order to learn 
the same training data set. The network robustness was 
then examined using the same pre-selected set of test 
data for each of the networks. Test data were randomly 
chosen from 1/4 to 1/3 of the main data set. The per-
formance and robustness of the different networks were 
compared so that the best configuration in terms of accu-
racy, performance and cost could be selected among 
available architectures. 

The MLP was initially developed with single hidden 
layer, and the genetic algorithm approach was employed 
to optimise the number of neurons in the hidden layer in 
order to avoid manual searching for the optimum number 
of nodes in terms of accuracy. MLPs with more hidden 
layers were evaluated using the same training data. The 
correlation results did not show any improvement in ac-
curacy, but the calculation cost increased as more hidden 
layers were added. The simulation was then extended to 
train and optimise RBF and Generalised MLP structures. 

Genetic algorithm (GA) is an optimisation tool, which 
has its origin from evolution theory and Genetic science. 
Input parameters, initial population in GA terminology, 
are selected based on their calculated fitness index with 
an evaluation function, and the parent’s pool is formed. 
Then the parent is mated (Mating, Crossover, and gener-
ating offspring) and a number of chromosomes are al-
tered within the new generation randomly (Mutation). 
The new chromosomes make the next generation, which 
is then evaluated by fitness function again. The above- 
mentioned steps are iterated until the appropriate fitness 
is met. The networks of this study were trained by GA 
where applicable (it was not applicable to CANFIS) and 
the number of neurons was calculated based on closer 
correlation of networks’ output with desired values. Hence, 
the fitness function in GA is typically formulated such 
that network error would be the minimum at the end of 
training for test samples. 

The back-propagation learning rule with an additional 
momentum term was selected for training MLPs and the 
other neural networks owing to its wide usage, low cal-
culation cost, and good accuracy. However, a more ac-
curate result can be achieved by using methods such as 
Levenberg-Marquardt learning algorithm [21]. Then the 
step and momentum size were kept constant in each in-
dividual hidden layer. In addition, the Tangent hyper-
bolic transfer function was used in hidden and output 
layers of the MLP architecture where applicable. The 
usage of transfer functions can be either optional or im-
perative according to the network’s imposed architecture. 

The CANFIS was finally developed and tested with 
the provided training and validation data. Bell-shape mem-
bership function was chosen along with Takagi-Sugeno- 
Kang (TSK) model [22] as employed fuzzy model. In 
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addition, three membership functions were set per input. 
The momentum played its role as the learning rule in this 
configuration as well. 

In the developed network, the weights were updated 
by batch approach where applicable and the mean square 
error (MSE) method was selected as the performance 
index and error calculator. The training session for each 
network is kept running until the MSE error reaches its 
pre-defined error threshold of 0.01. Then, the training 
session is labelled as completed. The GA optimisation is 
also regarded as finished after reaching 100 generations 
whilst 50 chromosomes are generated and selected in 
each generation. 

6. Results and Discussion 
The training sessions for four ANN structures were per- 

formed by using three quarters of the sample pool ran-
domly selected and the remaining one quarter was used 
for testing the developed networks. ANN output results 
have shown very accurate prediction of new samples. 
The results were compared in terms of their correlation 
factor, training effort, and network performance when 
encountering new data. Figures 5(a) and (b) show ex-
amples of comparison between results obtained from the 
trained ANN models using MLP structure and FE model. 
Each plot is formed of individual output results obtained 
from different MLP structures against the desired values 
extracted from FE model. Figure 5(a) illustrates the cor-
relation of vertical stiffness while Figure 5(b) illustrates 
the correlation of contact area. 

The correlation results for the different MLP structures 
are reported in Table 5. In these simulations, GA opti- 

 

   
(a)                                                          (b) 

Figure 5. (a) A comparison between vertical stiffness of MLP outputs and virtual test results; (b) A comparison between con-
tact area of MLP outputs and virtual test results. 

 
Table 5. MLPs’ configuration, training cost, and evaluated correlation factor between results by ANN and FE. 
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MLP with one hidden layer 7 0 0 0 10 0 0 0 30 1 0.99 1 1 0.96 0.95 0.95 

MLP with two hidden layers 7 7 0 0 21 24 0 0 85 0.99 0.99 0.99 0.99 0.99 0.96 0.95 

MLP with three hidden layers 7 7 7 0 21 22 25 0 469 0.99 0.99 0.99 0.99 0.98 0.96 0.95 

MLP with four hidden layers 7 7 7 7 17 21 22 23 1922 0.99 0.99 0.99 0.99 0.97 0.95 0.96 
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misation algorithm changed the number of neurons in 
hidden layer(s) to obtain an optimised structure in terms 
of accuracy and efficiency. Correlation factors are ex-
tremely close to one for macro-scale behaviour (stiff-
nesses and foot print area) and very close for micro-scale 
behaviour. The network efficiency in the training session 
was also evaluated by the elapsed time for training as 
shown in Table 5. 

However, the ANN structures should also be evaluated 
for their online usage efficiency. The use of a smaller 
network structure (in terms of number of layers and nodes) 
requires a smaller number of main mathematical opera-
tions (number of main mathematical operations is the ma-
jor source of calculation cost of formulas). It will conse-
quently lead to faster evaluation of ANN when a network 
with less complexity and fewer hidden layers is em-
ployed. 

The time needed for training session increases expo-
nentially as the network complexity is increased by em-
ploying more hidden layers and GA implementation on 
the network will severely influence the processing time 
for the training session. There is, nevertheless, an excep-
tion when the CANFIS is being trained. The elapsed time 
for training is substantially higher for a two-layer con-
figuration because of the high cost of optimising three 
membership functions morphology to achieve the best 
fitness. 

Figure 6 shows a comparison of the training effi-
ciency of the different networks. GFMLP showed the 
lowest elapsed time for training in spite of its more com-
plex structure in comparison with MLP while CANFIS 
achieved the poorest performance in training. The corre-
lation factor, R2, achieved by the trained ANN network  

configurations in each of the seven desired outputs in 
comparison with FE simulation results is shown in Fig-
ure 7. Figure 8 shows the average correlation factors 
achieved over the seven desired outputs for the trained 
ANN network configurations. Most of the ANN con-
figurations have shown reliable and acceptable results for 
the randomly selected test data. MLP outputs have achieved 
the best correlation with FE results even for the simplest 
configuration of one hidden layer. The training session 
cost for GFMLP is the least expensive of all the configu-
rations as can be seen from Figure 6. MLPs are also 
quite efficient, matching GFMLPs in terms of cost of 
training particularly for the first two configurations 
(MLP #1-2), but not for higher number of hidden layers. 

Hence overall, it has been demonstrated that the MLPs 
can be deployed with adequate efficiency as well as out-
standing accuracy for the set of available data in this re-
search. MLP with two hidden layers produced the best 
combination of accuracy and low cost of training. More-
over, MLP is the simplest and most commonly used 
structure among the proposed network structures. 

 

 
Figure 6. Efficiency of ANNs in training session. 

 

 
Figure 7. Comparison of R2 values of desired outputs between ANN prediction and FE results. 
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Figure 8. Comparison of average R2 values of desired outputs between ANN prediction and FE results. 

 
7. Conclusions 
In this study, an FE tyre model was developed to simu-
late tyre behaviour. Validation of the FE model was per-
formed in order to confirm whether simulated results 
were matched properly to real-world tests. Then, virtual 
tests were developed to generate tyre behaviour charac-
teristics under various tyre designs and loading configu-
rations using the validated tyre model. Next, these results, 
along with the input data, were used in modelling an 
ANN-based system to predict tyre characteristics. Vari-
ous ANN configurations were developed using Mat-
lab/NN Toolbox to learn the complex relationships be-
tween the geometrical and load parameters as input data 
and tyre stiffness properties and stresses as outputs. The 
network efficiency and performance of the different con-
figurations were compared by using a randomly selected 
new dataset. The MLP and GFMLP configurations ex-
hibited the best combination of accuracy and training 
efficiency out of all the configurations for the provided 
tyre training data set. The MLP with two hidden layers 
exhibited the best overall performance. 

This ANN configuration can predict tyre performance 
characteristics such as vertical and lateral stiffnesses, con-
tact pressure etc. for new tyre designs. The significance 
of this is that such an ANN can enable extensive para-
metric studies to be carried out, inexpensively, to opti-
mise a new tyre design to achieve the design targets be-
fore a much more expensive full FE analysis is used to 
confirm the predicted performance. Prototypes can then 
be built and tested to confirm the predicted performance 
of the design. This can certainly help tyre designers to 
achieve an optimised design quickly, efficiently and at 
reduced cost. 

This opens up the possibility of applying ANN to pre-
dicting other tyre performance characteristics as well as 
other automotive systems as an alternative to more ex-
pensive analysis methods. Possible areas of application, 
which will be explored in the future, are computing tyre 
burst inflation pressure, rolling resistance properties and 
tyre force and moment generation for simulating vehicle 
dynamics responses. 
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