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Abstract. Neurological disorders are diseases that affect the brain and the 
central autonomic nervous systems. These disorders take a huge toll on an 
individual's health and general well-being. After cardiovascular diseases, 
neurological disorders are the main cause of death. These disorders include 
epilepsy, Alzheimer’s disease, dementia, cerebrovascular diseases including 
stroke, migraine, Parkinson’s disease and numerous other disorders. This 
manuscript presents a state-of-the-art consolidated review of research on the 
diagnosis of the three most common neurological disorders using 
electroencephalogram (EEG) signals with machine learning techniques. The 
disorders discussed in this manuscript are the more prevalent disorders like 
epilepsy, Attention-deficit/hyperactivity disorder (ADHD), and Alzheimer’s 
disease. This manuscript helps in understanding the details about EEG signal 
processing for diagnosis and analysis of neurological disorders along with a 
discussion of the datasets, limitations, results and research scope of the 
various techniques. © 2021 Journal of Biomedical Photonics & Engineering. 

Keywords: neurological disorders; electroencephalogram (EEG); epilepsy; 
attention-deficit/hyperactivity disorder (ADHD); Alzheimer. 
Paper #3435 received 2 Jun 2021; revised manuscript received 15 Jul 2020; accepted for 
publication 11 Aug 2021; published online 7 Sep 2021. doi: 10.18287/JBPE21.07.040201. 

 
 
 

1 Introduction 
It has been analyzed in various studies that neurological 
disorders are growing at a high rate. According to the 
WHO, at some point in their lives, one out of four people 
in the world would have neurological disorders [1]. 
Neurological disorders are the world’s second most 
prevalent diseases, following ischemic heart 
disease [1, 2]. Neurological disorders affect the brain as 
well as the nervous system of the human body [3].  

The specific causes of the disorder can vary 
significantly depending upon the type of disorder as well 
as the specific area of the body that is affected. The 
causes may be due to genetic disorders, congenital 
abnormalities, infection, brain injury, etc. There are 
many known, relatively common neurological disorders 
but many are rare. Neurological disabilities include a 
wide range of disorders such as epilepsy, learning 
disabilities, neuromuscular disorders, autism, 
Alzheimer’s disorder, ADHD, multiple sclerosis, 
Parkinson’s disease, sleep disorder, and cerebral palsy. 

On the other hand, mental disorders are “psychiatric 
diseases” or diseases that mainly appear as abnormalities 
in thought, feeling, or conduct, which lead to distress or 
function impairment [4].  

Several brain-imaging tools are available for the 
diagnosis of these neurological disorders, including 
Positron Emission Tomography (PET), Near Infrared 
Spectroscopy (NIRS), Magnetoencephalogram (MEG), 
Electroencephalography (EEG), and Functional 
Magnetic Resonance Imaging (fMRI) [2]. This 
manuscript focuses on EEG analysis because it is a low-
cost, non-invasive, portable technique, which is widely 
used. A standard electroencephalogram (EEG) measures 
and records the electrical activity of a case’s brain to 
evaluate cerebral functions. There are numerous 
contributions in literature that analyze EEG signals for 
the detection of neurological disorders, early diagnosis of 
neuro-developmental disorders, detection of acute 
neurological events and monitoring the behavior of 
patients [1, 5].  
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Numerous works in literature on EEG analysis have 
focused on epilepsy as one of the most common 
neurological disorders. Neurological disorders such as 
ADHD and Alzheimer’s, however account for 
approximately one-third of the total diseases in 
developing nations. These disorders are often associated 
with an abnormal pattern of EEG and to analyze these 
EEG signals we need a well-trained neurologist. EEG 
signals are non-linear in nature. Some neuronal activity 
occurs because of minor changes in the voltage 
fluctuation of the EEG measures. The visual inspection 
of these signals, therefore, varies with the expertise. In 
addition, the long EEG recordings take a lot of time to 
review manually and the results sometimes cannot be 
exact and consistent [6]. This situation necessitates an 
automated system, which can be used, for neurological 
disorder detection and brain function monitoring with 
minimal human intervention [7]. This review will give an 
insight into the basics of EEG and how it is used to 
diagnose and analyze different neurological disorders.  

The rest of the paper is organized as follows: in 
Section II and III, we discuss EEG principles and their 
processing phases respectively. Further, we discuss the 
investigation of three neurological disorders: Epilepsy in 
Section 4, ADHD in Section 5, and Alzheimer in 
Section 6 along with the results obtained by various 
works in literature. In Section 7, we discuss the problems 

and limitations for the detection of each disorder. The list 
of acronyms and abbreviations is summarized in 
Appendix A.  

2 EEG Overview  
In electroencephalogram (EEG), electrical currents are 
measured, generated by a group of specialized pyramidal 
cells within the brain which measure neuronal 
activity [6]. The electrical activity of a brain (EEG) 
exhibits significantly complex behavior with strong non-
linear and dynamic properties. Brain activity is measured 
by placing the electrodes on the scalp of the subjects. 
Positions of electrodes are defined by the 10–20 
International Electrode Positioning System. 

	
Fig. 1 Anatomical areas of the brain [8]. 

The brain is divided into three important parts 
anatomically: the cerebrum, cerebellum and brainstem, 
as illustrated in Fig. 1. The cerebrum contains two 
hemispheres: the right and left hemispheres. Each 
hemisphere is divided into four lobes: frontal, parietal, 
occipital and temporal. Each part is associated with brain 
functions related to thoughts, movements, emotions and 
motor functions. Table 1 illustrates the responsibility of 
each part. 

Table 1 Anatomical region of brain associated with 
activity based on work [8]. 

Regions  Involve with / Responsible for  

Cerebral cortex Higher order cognitive tasks, such 
as problem solving, language 
comprehension, movement and 
processing of complex visual 
information 

Frontal lobe Personality, emotions, problem 
solving, motor development, 
reasoning, planning, parts of speech 
and movement 

Parietal lobe Sensation (e.g., pain, touch), 
sensory comprehension, 
recognition, perception of stimuli, 
orientation and movement 

Occipital lobe Visual processing 

Temporal lobe Involved in dealing with the 
recognition of auditory stimuli, 
speech, perception and memory 

Cerebellum Motor control, sensory perception 
and coordination, voluntary muscle 
movements, fine motor skills, 
posture and balance regulation 

 
The brain signals are a combination of different base 

frequencies. These broad frequency ranges have been 
divided into several subgroups, called EEG rhythms or 
frequency bands. Each frequency band reflects a different 
state of mind or cognition in the brain (Table 2). Types 
of rhythms such as theta, delta, alpha, beta, and gamma 
can be observed in the brain waves depending upon the 
different functional states of the brain. Any small 
changes to these waves’ frequency patterns help identify 
neurological conditions [6, 9]. 

3 EEG Signal Processing  
The dynamically changing functional states of the brain 
are easily captured in the small variations of the EEG 
readings. Moreover, the EEG of the normal person also 
varies from the abnormal person. Therefore, it is very 
important that these changes be detected by using 
computer-aided technology to use a variety of signal 
processing and test mechanisms. This takes place in three 
steps – preprocessing, feature extraction, and result 

analysis [6] as shown in Fig. 2. 
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Table 2 Brain Rhythms [9]. 

Rhythm Frequency 
range (in Hz) Regions Activity 

Delta (δ) 0.1–3.5 (<4) Mostly in thalamus 
Deep sleep, continuous-attention tasks, 

unconscious 

Theta (θ) 4–7.5 Hippocampus region Creativity, intuition, recall, imaginary dream 

Alpha (α) 8–13 Occipital and parietal regions Relaxation, but not drowsy 

Beta (β) 14–30 
Parietal, somatosensory, frontal, 

and motor areas 
Memory, problem solving 

Gamma (γ) 30–100 Cortex 
Cognition, Information processing, Motor 

Functions, Higher mental activity 

 

 

Fig. 2 EEG Signal Processing. 

3.1 Pre-processing  
Due to noise and different artifacts, it is essential to apply 
pre-processing and denoising methods to decrease their 
impact on the feature extraction stage. The pre-
processing methods applied in the research studies are 
broadly divided into three categories – down sampling, 
artifact handling, and feature scaling, as explained 

below [10].  

3.1.1 Down sampling 
Different EEG devices have different sampling rates. To 
conserve memory and signal processing time, some of 
the researchers are down-sampled to certain ranges 
depending upon the requirement of an application. 
Down-sampling to 64 Hz from 512 Hz, 256 Hz to 16 Hz, 
and 2400 Hz to 600 Hz, are done in the research studies 
depending upon the requirement of an application.  

3.1.2 Artifact Handling 
While raw signals of EEG recordings tend to contain 
noise and artifacts, EEG signals measured from the scalp 
do not necessarily accurately represent signals 
originating from the brain. As summarized in Table 3, 
 

Table 3 EEG Artifacts [9, 11]. 

Type Name Origin 

Physiological  
Artifacts/Intrinsic  

EOG  
Eye blink,  
eye movement, 
eye flatter  

EMG  

Chewing, 
Swallowing, 
Clenching, 
Talking, sniffing  

ECG  Heart potentials  

Non-Physiological 
Artifacts/ 
Extrinsic  

Instrumental  

Electrode 
misplacement 
and cable 
movement, 
Malfunction of 
any part  

Interference  

High voltage 
machine in 
surrounding 
(Power line)  

Movements  
Head and body 
movement  
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artifacts embedded in the EEG recordings are generally 
subdivided into two categories: physiological and non-
physiological artifacts. Physiological artifacts include 
electrical potentials elicited by biological activities, 
which are largely generated from the physical part 
proximal to the head (e.g., eyes, muscles, and heart) or 
due to the subjects’ movements. Non-physiological 
Artifacts include the electrode-scalp interface, devices, 
and environment, which are generated anywhere near the 
EEG recording system. Variety of artifact removal 
techniques are used to handle all these kinds of artifacts. 
A large number of artifacts can be avoided through 
careful planning of experiments and recording sessions 
in an appropriate recording environment. Moreover, a 
variety of methods may also be used to reject noisy data, 
delete artifacts, and enhance data signal-to-noise 
ratio (SNR) [10, 12]. The major problem in the use of 
these processes is the loss of essential neuronal 
knowledge from artifactual epochs may lead to incorrect 
assumptions. Signal based automatic artifact removal 
algorithms are founded upon some presumption, that 
each channel is the total sum of pure EEG data and a 
proportion of an artifact. Several theories have been 
proposed based on signal transformation, some focusing 
on various filters for artifact deletion and some are using 
the blind source separation (BSS) method including a 
variety of unsupervised learning algorithms without prior 
information and extra reference channels [11].   

The artifact removal techniques have been tabulated 
in Table 4. The type of artifact removal technique 
mentioned in the first column, while the rest of the 
columns denote the type of artifact removed, application 
in which the corresponding method has been applied with 
its advantage and limitation. 

3.1.3 Feature Scaling 
Normalization is one of the most widely used methods of 
function scaling in the literature to demonstrate 
symmetrical behavior. The scaling is performed either on 
the raw/filtered values or on the extracted features. For 
instance, in Ref. [19], the authors use Z-score (mean = 0, 
Std Dev = 1) before feature extraction similarly in 
Ref. [8], the authors apply Min-Max and unity method 
for Multi-class task recognition.  

3.2 Feature Extraction  
Various feature extraction methods are used to perform 
frequency domain, time domain, and time-frequency 
domain analysis of the signals [6, 19]. The feature 
extraction methods have been categorized into three 
categories: spectral estimation methods, family of 
transforms, and time decomposition methods.   

Spectral estimation transforms a signal from the time 
domain to the frequency domain and can provide a 
description of the signal’s power or energy distribution 
along frequency. Widely used spectral estimation 
methods of EEG, include Non-parametric (classical): 
Periodogram, Welch and Parametric and (non-classical): 
Autoregressive. In spectral analysis, the basic assumption 

is that the spectrum of an EEG signal is fixed and does 
not change over time. To reveal the time-varying 
spectrum of non-stationary EEG signals, time-frequency 
analysis (TFA) techniques are needed. Some popular 
methods include the short-time Fourier Transform 
(STFT), the Continuous Wavelet Transform (CWT) and 
Discrete Wavelet Transformation (DWT). Similarly, the 
decomposition method also helps to effectively analyze 
the signals. The signal is decomposed into a set of 
intrinsic mode functions (IMFs) that are used as sub-
signals [8]. 

3.3 Result Analysis  
The result analysis phase is explained through 
classification models and statistical analysis.  

Classification Models. A variety of machine 
learning algorithms are used for the diagnosis of 
neurological disorders. The machine learning classifiers 
such as supervised, unsupervised, deep learning neural 
architectures and ensemble learning models are used for 
classification purposes in various EEG research studies 
[8, 20–23]. Some popular classifiers include LDA, SVM 
with linear and RBF kernel function, KNN, CNN, etc.  

Statistical Analysis. Some application studies have 
used different statistical tests for EEG signal analysis. 
These tests are applied on features or parameters for 
different purposes or the application. For instance, T-test, 
One-Way ANOVA, and Wilcoxon rank-sum test, 
Kolmogorov-Smirnov test for normal distribution, and 
non-parametric Kruskal-Wallis test [6]. 

4 Diagnosis of Epilepsy  
Epilepsy is a neurological condition that affects the 
nervous system. It is also known as a seizure disorder. It 
is usually diagnosed after a person had at least two 
seizures or after one seizure with a high risk that was not 
caused by some known medical condition. Epilepsy are 
divided into two categories [24]: generalized seizure and 
focal seizure. Subtypes of generalized seizures are 
absence seizures, tonic seizures; atonic seizures, etc. as is 
given in Fig. 3.  

Epilepsy is caused by a sudden abnormal electrical 
discharge that occurs in the cerebral networks and usually 
lasts for less than a few minutes; so, the attacks are hard 
to predict. Epilepsy occurs in different phases as pre-ictal 
(immediately preceding seizure), ictal (during a seizure), 
inter-ictal (in-between seizures) and post-ictal 
(immediately following a seizure) [22]. EEG records of 
the epileptic patients are usually long (hours to days) and 
contain an immense amount of patient info. A visual 
assessment of such recordings is time-consuming, slow, 
and sensitive to errors and subjects to inter-observer 
variability [25]. Hence, several methods have been 
developed to help diagnose epileptic seizures by 
automatic computer-assisted therapy (CAD). EEG is 
commonly used for the diagnosis and analysis of 
epilepsy [8]. EEG helps to assess the types of seizure and 
epileptic condition of patients with epilepsy. The EEG 
finding makes a significant contribution to determine a  
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Table 4 Artifact removal techniques. 

Sr. No Method Description Type of 
artifact Advantage Limitation 

1 Regression 
Methods  
[10–12] 

It is applied under the 
assumption: each channel 
is the cumulative sum of 
pure EEG data and a 
proportion of artifact 

EOG 
ECG  

• computationally 
simple  

• requires exogenous 
reference channels, 
outcomes are highly 
affected by 
bidirectional 
contamination; 

• it does not work 
successfully on other 
artifacts; 

• cannot perform on 
single channel 

2 Wavelet 
Transform  
[10–13] 

Threshold applied to 
discard the signal that 
contain artifacts 

EOG 
EMG   

• very good time 
frequency localization 
features relative to 
Fourier transform 

• cannot remove 
artifacts completely if 
the spectral properties 
overlap with the 
spectral properties of 
the artifacts 

BSS 

3 Principal 
Component 
Analysis 
(PCA)  
[10–14]  

Based on Eigenvalues of 
covariance matrix  

EOG  • is more 
computationally 
efficient than linear 
regression methods  

• fails to separate the 
interferences when the 
potential of drifts and 
EEG data are similar; 
fails on similar 
amplitude for neuronal 
and artifactual activity 
require the assumptions 
of orthogonality and 
Gaussian distributions 

4 Independent 
Component 
Analysis 
(ICA)   
[10–14]  

Assuming that signal 
sources are instantaneously 
linear mixtures of cerebral 
and artifactual sources can 
decompose observed signal 
into independent 
components (ICs). Once 
ICs are extracted from 
original signals, the clean 
signal reconstructed by 
discarding ICs contains 
artifacts 

EMG 
ECG 
EOG  

• does not require any 
prior information or 
additional reference 
channel for removal of 
artifacts; 

• shown promising 
results in cases where 
the neuronal and 
artifactual sources are 
not completely 
independent 

• cannot perform on 
single channel;  

• the complex 
iterative procedure 
limits use in online/real 
time applications;  

• disregard of 
temporal or spatial 
relations within sources 
will result in the loss of 
relevant information;  
• require the 
assumptions of 
orthogonality and 
Gaussian distributions  

5 Canonical 
Correlation 
Analysis 
[11, 12]  

Use second order statistics, 
which bring shorter 
computational time. It 
finds the linear relation 
between two multi-
dimensional random 
variables by maximizing 
the pairwise correlations 
across the two data sets 

EMG  • uses second-order 
statistics with less 
computational cost 
than ICA; 

• does not require the 
assumptions of 
orthogonality and 
Gaussian distributions 

• cannot perform on 
single channel 
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6 Morphological 
component 
analysis 
(MCA) 
[15, 16] 

Used to decompose a 
signal into components 
that have different 
morphological aspects, 
signals can be represented 
as a linear combination of 
three morphological 
components using MCA 
full form theory 

EOG • fast computation of 
the estimation of the 
signal coefficients 
using the basis pursuit 
algorithm, less memory 
requirement 

• always requires a 
database containing 
morphologies of 
different types of 
artifacts, and therefore, 
its performance is 
highly dependent on 
the available templates 
of artifacts 

7 Empirical 
Mode 
Decomposition 
[11, 17] 

Heuristic technique. for 
non-stationary and non-
linear signal processing It 
decomposes/extracting the 
signal, x[n], into a set of 
components with 
amplitude and frequency 
modulated, b[n], patterns 
from time series data 
called intrinsic mode 
functions (IMFs) 

EMG • this technique is 
empirical and data 
driven technique, 
whereas other methods 
depend on the 
selections of basic 
functions, such as 
wavelet analysis 

• it is very sensitive 
for noise which incurs 
mode mixing 

Filtering Methods 

8 Adaptive 
Filtering  
[11, 12] 

To quantize the amount of 
artifactual contamination 
in the primary input, by 
iteratively adjusting the 
weights according the 
optimization algorithm, 
and subtract it from EEG 
with artifacts signals 

EOG 
ECG 

– • reference channel is 
given, as one of the 
inputs to the filter; 
additional sensors are 
needed to provide 
reference inputs 

9 Wiener 
[11, 18] 

It is a linear statistical 
filtering technique used to 
estimating the true EEG 
data with the purpose to 
develop a linear time 
invariant filter to minimize 
the mean square error 
between the pure EEG data 
and the estimated signal 

EOG 
EMG 

• minimization is 
done using an 
estimation of the 
power; 

• spectral densities of 
the signal and artifact; 
hence it does not need 
a reference waveform 

• calibration needed 
prior to usage and that 
it cannot run in real 
time 

	

	
Fig. 3 Types of epilepsy. 
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multi-axial diagnosis of epilepsy, in terms of whether the 
seizure disorder is idiopathic or symptomatic, focal or 
generalized, part of a specific epilepsy syndrome [8]. 

4.1 Classification and prediction of seizure   
EEG based epileptic seizure detection methods stem 
from the observation that EEG signal descriptors allow 
discrimination between normal and abnormal brain 
activity. A variety of EEG signal processing methods are 
available for the accurate detection of brain seizures. In 
EEG, signal analysis for epilepsy, 
classification / detection is done between epileptic and 
healthy subjects. Various approaches like supervised, 
unsupervised approaches are used to discriminate 
categories as normal vs. ictal, normal vs. pre-ictal, pre-
ictal vs. ictal, focal vs. non-focal, seizure vs. non-
epileptic etc.  

Most methods employ classification techniques from 
the supervised machine. Among these methods, Support 
Vector Machine (SVM) is used more extensively as a 
supervised machine learning based classifier. In 
study [23], the authors employed a LS-SVM 
methodology, which proposes the use of decomposed 
EEG signals into six sub-bands namely D1-D5 and A5 
using DWT. Then, the author uses approximate entropy 
(ApEn) feature, which performs the study of variation in 
subbands as an input function for SVM. Many 
researchers have used different types of SVM such as 
SVM (RBF), LS-SVM [26] with different feature 
extraction methods like PCA, wavelet transform (WT), 
ICA. Likewise, prediction of epileptic seizure is done by 
analyzing time series EEG signals using k-nearest 
neighbors (KNN) classifier [27].   

In the same way random forest, back proposition, 
generalized relevance learning vector quantization 
(GRlVQ), WT with random forest, WT with SVM, fuzzy 
logic and, wavelet-bank filtering and dimensionality 
reduction using a generalized Gaussian distribution 
(GGD) with LDA [23, 28] are also used to classify 
epileptic signals. Focal epilepsy is a variant of epilepsy 
that mostly occurs in the limited area of the brain. Focal 
EEG signals are recorded from the brain area where first 
ictal EEG signal changes are detected and non-focal 
signals are recorded wherein, they do not take part in the 
seizure onset. In study [29], the authors apply empirical 
wavelet transform (EWT) with LS-SVM to separate the 
focal and non-focal rhythms from groups of EEG signals.  

Neurologists are able to diagnose whether a person 
has epilepsy by monitoring EEG manually. However, it 
is also important to discriminate between the inter-ictal 
and ictal stages so that proper actions can be taken timely 
to avoid the risks of epilepsy. In Ref. [30], the authors 
discriminate between the inter-ictal and ictal EEGs using 
multi-basis maximal overlap discrete wavelet package 
transform MODWPT, six dimensionality reduction 
algorithms, and LS-SVM.  

In the conventional methods where data is 
represented by features, there is a great loss of data. 

Feature extraction becomes very complex due to the 
presence of noise and artifacts in data. Thus, it is a 
challenging problem to produce a generalized automatic 
system with loyal performance, especially with low data 
availability. Currently, deep learning approaches 
substitute methods that integrate few sections of the data 
in the classification. The EEG signal can be processed as 
raw [31]. In Ref. [32], the authors apply a Deep 
Convolutional Neural Network (DCNN) on the raw EEG 
signals for the automatic identification of differentiated 
spatial features between inter-ictal and pre-ictal states 
and then used Bi-LSTM features that are created by the 
DCNN to classify inter-ictal or preictal segments of the 
incoming EEG section.  

Early prediction is done by analyzing pre-ictal and 
intertidal stages. Various ML and DL are used for early 
prediction [22, 33]. These analyses are evaluated based 
on prediction time or other metrics like seizure 
occurrence period (SOP), the time duration in which 
there is a possibility of seizure and seizure prediction 
horizon (SPH), the duration of time between the alarm 

and the start of SOP.   

4.2 Real time monitoring system  
In real-time monitoring EEG recording and video 
surveillance videos are collected from epilepsy patients 
with some prior knowledge (label the different states of 
epilepsy patients from doctors). An expert observes the 
EEG recording and labels the seizure with the assistance 
of monitoring videos. It is based on change detection or 
event detection approaches, which find the change 
between brain states wherein the EEG changes from 
normal state to abnormal state [34].  

Similarly, various warning systems are also available. 
Such systems utilize both ECG and EEG data to generate 
an alarm before seizure onset according to an ideal 
situation. Some systems combine accelerometer and 
electrodermal activity methods with several electronic 
mobile applications developed to electronically track 
seizure information Seizure record applications allow 
families to easily record seizures in an electronic format 
that is user friendly, mobile, and easily accessed by their 

treating epileptologist [35].  

4.3 Comparative result Analysis for Epilepsy 
classification and Prediction   

The various seizure classification methodologies are 
discussed in the earlier section. It is imperative to analyze 
the statistical evaluation of these methods’ performance. 
The summary of methods, features used, the dataset used, 
and their performance in terms of accuracy is given in 
Table 5 According to the state-of-the-art, it has been 
observed that various methods perform differently for the 
different datasets. For instance, LS-SVM gives 100% 
accuracy for Bonn dataset [36] but it gives 90% for the 
Bern-Barcelona database [37]. Deep learning approaches 
are more robust irrespective of the dataset. 
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Table 5 Comparison of studies on classification for epilepsy. 

Sr. no 
Year of 

Publication 
Dataset Features Method 

Overall 
Accuracy 

(%) 
Bonn dataset [36] 

1 
[23] 

(2017) 

Five sets marked 
as (AE) 

 
Subject:  

5-HC (A, B),  
5-preictal (C, D),  

5-Ictal (E) 
 

Channel: 1 
Sampling rate: 

173.61 Hz 

DWT based ApEn 
LS-SVM, SVM (RBF) for  
(A-E, AB-E, CE, CD-E, 
ABCD-E)  

100 

2 
[25] 

(2019) 
Discrete Wavelet + 
Arithmetic coding 

k-NN, Naïve Bayes, MLP, 
and SVM for (A-E, AB-E,  
C-E, CD-E, ABCD-E) 

100 

3 
[26] 

(2018) 

Principal Component 
Analysis (PCA) and 
Wavelet Transform  

Backpropagation  95.29 

GRLVQ  98.66 

WT+Randome Forest   98.05 

PCA+Randome Forest  98.22 

PCA+GRLVQ  98.45 

4 
[30] 

(2019) 

Maximal overlap 
discrete wavelet 
package transform 
(MODWPT)  

LS-SVM    

Multi-basis 
MODWPT+PCA+ 
LK-LSSVM/ 
RK-LS-SVM   

99.60/99.20 

Multi-basis  
MODWPT+ICA+ 
LK-LSSVM/ 
RK-LS-SVM  

99.76/98.80 

Multi-basis  
MODWPT+LLE+ 
LK-LSSVM/ 
RK-LS-SVM 

98.73/98.13 

5 
[31] 

(2019) 
NA 

CNN + Scalogram for  
A-E, 
A-D, 
D-E, 
AD-E,  
A-B-C-D 

 
99.5 
100 
98.5 
99 

93.6 

Boston database [38] 

6 
[28] 

(2018) 

Subject: 
considered 39 
signals related to 
13 seizures and 
26 non-seizure 
signals  
Channel: 23  
Sampling rate: 
2561 Hz  

Separation of brain 
rhythms: wavelet 
bank filtering, 
statistical model 
based on 
dimensionality 
reduction with GGD  

Linear discriminant analysis 
for  
Delta band,  
Theta band, 
Alpha band, 
Beta band, 
Gamma band  

 
 

95.13 
92.69 
96.59 
94.48 

97 

7 
[32] 

(2018) 

Subject:  
13 seizures and 
26 non-seizures 
Channel: 23  
Sampling rate: 
2561 Hz  

NA DCNN+BiLSTM  99.66 
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Bern-Barcelona database [37] 

8 
[29] 

(2016) 

Subject:  
5 intracranial 
Channel: 64  
Sampling rate: 
512 Hz  

Area computed from 
2D Reconstructed 
phase space plot  
(RPS) of rhythms 
using CTM  

Least-squares support vector 
machine (LSSVM) for  
50 pairs of signals area,  
750 pairs of signals 

 
 

90 
82.53 

 

4.4 Datasets for Epilepsy Analysis and 
Prediction   

EEG is a significant means for the identification, 
analysis, and prediction of epilepsy seizures. For these 
reasons, multiple open-access databases have been 
published by different hospitals and research centers. For 
instance, the Center of Epilepsy at Children’s Hospital, 
Boston, and Temple University Hospital have made their 
EEG databases publicly available to the researchers. The 
database of Bonn University is not large enough but is 
extensively used for the detection of ES in the literature. 
It consists of 5 datasets A, B, C, D, and E. CHB-MIT 
database has data of 22 patients with 9–24 recordings of 
each patient and every recording is 1 h long with some 
discontinuities due to hardware limitation (some cases 
have 2–4 h long recordings) [23, 25]. Freiburg Hospital’s 
database was one of the most notable databases, which 
contained iEEG data of 21 subjects with around 
88 seizures, but recently it has been merged into 
EPILEPSIAE database to provide larger datasets due to 
which this database is not open-source now [22].  

Bern-Barcelona Database containing intracranial 
EEG signals. The EEG signals were recorded from 
5 epilepsy patients who were the candidates for surgery 
due to long-standing drug-resistant temporal lobe 
epilepsy. The database contains 3750 pairs of EEG 
signals for each focal and non-focal category. Each pair 
contains EEG signals, namely x and y, which were 
recorded from adjacent channels. The EEG signals were 
sampled at a rate of 512 Hz, and the duration of each 
signal is 20 sec [29]. Likewise, CHB-MIT Scalp EEG 
Database collected at the Children’s Hospital Boston. 
Recordings, grouped into 23 cases, were collected from 
22 subjects. Subjects were monitored for up to several 
days following withdrawal of anti-seizure medication in 
order to characterize their seizures and assess their 
candidacy for surgical intervention. All signals were 
sampled at 256 samples per second with 16-bit resolution 
[30].  

5 Diagnosis of ADHD  
ADHD is a common neuro-developmental disorder that 
begins in childhood and can continue through 
adolescence and adulthood. ADHD in children leads to a 
lack of interest in all things. The dilemma of the 
syndrome concerns children in their families, in the study 
area, and in the community. Kids have problems paying 

attention, listening attentively, following commands, 
keeping still. ADHD is divided into three types: 
Inattentive, Hyperactive / Impulsive, and combined 
(Fig. 4). Symptoms differ according to type [39, 40].  

Diagnosis of ADHD is typically carried out using 
clinical interviews structured around the diagnosis 
classification systems of DSM-5 and ICD-11 [40–42]. 
Different diagnosis and analysis methods for ADHD are 
found in the literature. A more comprehensive 
description can be found in study [43]. Some specific 
symptoms of the disorder are simpler to identify than 
other disorder’s symptoms. It is needed to conduct a 
diagnosis procedure followed by evaluation techniques 
for the disorder. Among all diagnosis methodology, EEG 
plays a key role to assess and evaluate the ADHD 
disorder. Human activities are related to neural functions. 
Many researchers adopted this main tool to diagnose 
ADHD in their research. 

Numerous EEG studies utilized spectral analyses to 
reveal the EEG characteristics features to describe the 
difference between attentive and non-attentive states of 
ADHD children. Likewise, assessment of cognitive 
capability is also focused in ADHD-affected children. 

5.1 Classification of EEG signals for ADHD 
Machine learning methods can be used for finding some 
relevant discriminators between ADHD and control 
groups with different EEG characteristics viz. spectral 
features, nonlinear features, statistical features.  

The majority of EEG analysis for ADHD is based on 
spectral power features which are measured with the 
Theta/beta ratio (TBR), Theta/alpha ratio, TBAR (Theta/ 
(alpha + beta)), relative delta, theta, alpha, and beta 
power [4, 41]. 

In literature, many researchers have utilized different 
methods to analyze resting-state EEG (rsEEG) and time 
series recorded from an ADHD group and a control 
group. Authors [44, 45] contributed to discovering the 
best indicator of attention for ADHD. They applied the 
wavelet decomposition method to obtain different 
frequency bands of EEG. They extracted seven features 
(relative Delta, Theta, Alpha and Beta power, TBR, 
TAR, and TBAR) for each sample. Then, linear 
discriminant analysis (LDA) was used for classification. 
They proved that the TBR is a significant feature in 
discriminating between attentive and non-attentive 
states. Likewise [41], used relative spectral power, 
spectral power ratio, complexity analyses, and 
bicoherence to extract rsEEG features. To examine the 
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effect of these features on ADHD identification, they 
achieved an AUC of 0.9158 and an accuracy of 84.59% 
using a support vector machine (SVM).   

TBR has been used as a measure for discriminating 
between children with and without ADHD in several 
studies. However, in some cases, researchers could not 
attain good accuracy using TBR. In study [39], the 
authors attempted 0.878 AUC using eight key feature 
descriptors for the ADHD/control classification and 
ranked based on the t-test. The results for beta (indicative 
of heightened cortical arousal) activity has been less 
consistent, with some studies reporting reduced beta 
activity in frontal and central regions and others not. 
There also tends to be a small number of ADHD children 
who display an abundance of beta activity [46]. In 
Refs. [20, 21], the authors apply machine-learning 
techniques for diagnosis of adult ADHD.   

With the spectral features of EEG, non-linear features 
also play a vital role in ADHD analysis. Non-linear 
analysis of EEG waves has revealed new information on 
the complex dynamics of underlying neural 

networks [47]. Well-known entropy methods like 
Sample Entropy (SampEn), Dispersion entropy 
(DispEn), Multivariate Sample Entropy (mvSE), 
Approximate entropy, sample entropy are used to classify 
EEG signals [48]. Likewise, in study [49], fractal 
dimension as Higuchi's, Katz's, and Petrosian’s has been 
applied to discriminate ADHD and healthy controls. 
Brief comparison of studies on classification for ADHD 
is given in Table 6. 

5.2 Assessment of Cognitive Capability   
EEG can be used for the assessment of the attention 
capability [51] and cognitive capability of ADHD-
affected children. Based on this, new methodology or 
techniques of teaching can be adapted to enhance their 
learning capability. In order to investigate human 
cognitive patterns, Event-related potentials (ERPs) visual 
stimulation with the Oddball paradigm is used as the 
basis.  

Table 6 Comparison of studies on classification for ADHD. 

Sr. no Year of 
Publication Dataset Features Methods 

Overall 
best 

Accuracy 
(%) 

1 
[39] 
2019 

Subject: 30 ADHD, 30 HC   
Channel: 21   
Sampling rate: 256 Hz  
Recording: Resting state  

Eight crucial feature 
descriptors were 
selected and ranked 
based on the t-test 
(refer reference for 
more detail)  

SVM 84.44 

2 
[45] 

(2017) 

Subject: 120   
Channel: 1  
Sampling rate: 256 Hz  
Recording: Working state  

Feature Selection using 
Mutual Information  

LDA 65.5 

3 
[47] 

(2016) 

Subject: 30 ADHD, 30 HC  
Channel: 19  
Sampling rate: 256 Hz  
Recording: Working state  

Fractal dimension (FD) 
based features:  
Higuchi, Katz and 
Petrosian fractal 
dimensions, largest 
Lyapunov exponent 
and approximate 
entropy  

Multi-Layer 
Perceptron 

(MLP) 
93.65 

4 
[49] 

(2020) 

Subject: 23 ADHD, 23 HC  
Channel: 4   
Sampling rate: 2500 HZ  
Recording: Working state  

Morphologic Features  
SVM 
k-NN 

RF 

89.13 
86.95 
82.6 

Non-linear Features, 
Wavelet  

AdaBoost 
MLP 
NB 
LR 

89.13 
91.3 
86.95 
89.13 

5 
[50] 

(2019) 

Subject: 50 ADHD, 51 HC 
Channel: 128, 32 selected   
Sampling rate: 1000 HZ  
Recording: Resting state  
 

DF, Brain Network 
Measures  

CNN 
MLP 
SVM 

94.67 
84.53 
84.17 
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For instance, the probable region of the brain that 
shows abnormality due to ADHD syndrome can be used 
for assessment of learning capability of ADHD-affected 
children [43]. Similarity patients are asked to do some 
motor activity like to arrange the spoons and hand them 
over to their caretaker. Moreover, visual cues activity as 
colors, numbers, and animals, are identified to find out 
the attentive and cognitive capability [44].   

Cognitive training is a commonly used therapy for 
ADHD. However, the main challenges with such training 
are illuminating the repetitive scenes, stimulating the 
user’s interests, encouraging more engagement, and 
adjusting the difficulty level. Applying EEG signal is a 
familiar method towards the improvements in the 
sustained attention levels of children by designing video 
games [52] with the introduction of “serious games” 
attempted to measure attention to detect ADHD.  

5.3 Datasets for ADHD Analysis   
An extensive amount of literature has been researched by 
collaborating with the various medical associations. Data 
used for such research are not publicly available due to 
privacy issues. However, some research has been done 
on ADHD analysis on publicly available data.   

EEG data for ADHD/Control children done EEG 
recording for 61 children with ADHD and 60 healthy 
controls (boys and girls, ages 7–12) is given in Ref. [47]. 
The ADHD children were diagnosed by an experienced 
psychiatrist with DSM-IV criteria, and have taken Ritalin 
for up to 6 months. EEG recording was performed based 
on 10–20 standard by 19 channels (Fz, Cz, Pz, C3, T3, 
C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, O2) 
at 128 Hz sampling frequency. The A1 and A2 electrodes 
were the references located on earlobes. Two electrodes 
that were placed below and above the right eye recorded 
the eye movement. EEG recording protocol was based on 
visual attention tasks. In the task, a set of pictures of 
cartoon characters was shown to the children and they 
were asked to count the characters.  

Similarly, in FOCUS [52], EEG brain recording of 
ADHD and non-ADHD individuals during gameplay of 
a brain-controlled game, recorded with an EMOTIV EEG 
headset are collected. It can be used to design and test 

methods to detect individuals with ADHD.  

6 Diagnosis of Alzheimer’s disease (AD)  
Dementia is a syndrome usually of a chronic or 
progressive nature in which there is deterioration in 
cognitive function. Worldwide, around 50 million people 
have dementia [53]. Alzheimer's disease is the most 
common form of dementia.  

Alzheimer’s disease is an irreversible, progressive 
brain disorder that slowly destroys memory and thinking 
skills, and, eventually, the ability to carry out the simplest 
tasks. In most people with Alzheimer’s, 
symptoms (Fig. 5) first appear in their mid-60s. 
Estimates vary, but experts suggest that more than 
5.5 million Americans, most of them age 65 or older, 
may have dementia caused by Alzheimer’s.  

		
Fig. 5 Alzheimer’s Symptoms.  

Numerous neuroimaging techniques have been used 
with the aim of distinguishing AD and Mild Cognitive 
Impairment (MCI) patients from cognitively healthy 
control (HC) subjects: positron emission tomography 
(PET), magnetic resonance spectroscopy, functional 
magnetic resonance imaging (fMRI), 
magnetoencephalography (MEG), and 
electroencephalography (EEG) [54]. PET and fMRI 
show a good structural accuracy, but both offer a limited 
temporal resolution. By contrast, EEG and MEG are non-
invasive techniques with high temporal resolution, 
allowing for studying the dynamic processes involved in 
the regulation of complex functional brain systems [55]. 
Particularly, EEG is widely used due to its portability, 
low cost, and availability. Moreover, EEG has already 
shown its usefulness to characterize brain dynamics in 
AD and MCI.  

6.1 Early Diagnosis and classification  
To diagnose Alzheimer using EEG, methods are divided 
into two approaches. The first accomplished in the 
resting state (awake at rest) in the absence of any 
stimulus. Since the patient is not required to perform a 
behavioral task, it is more comfortable and less stressful 
for patients. The second approach to EEG studies is 
conducted when the subject is performing a pre-defined 
task (task-oriented). Approach of task-oriented EEG 
studies is not ideal for most people with AD since 
patients have an increase of anxiety and anger.  

The discrimination of early Alzheimer’s disease (AD) 
and its prodromal form (i.e., mild Cognitive impairment, 
MCI) from cognitively healthy control (HC) subjects is 
crucial since the treatment is more effective in the first 
stages of the dementia. MCI is an early stage of 
Alzheimer’s or another dementia. For early diagnosis in 
Refs. [54, 56], compared behavioral results (reaction 
time and accuracy), ERP and ERD/ERS responses when 
healthy elderly (HE) controls, MCI and mild AD patients 
were performing a three-level N-Back visual working 
memory task.  

The anomalies that AD and MCI induce in EEG 
operation have been usually studied using simple signal 
processing approaches, such as spectral techniques via a 
power increase in low frequency bands, as well as a 
decrease in higher frequencies. Nonlinear analysis [57] 
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as permutation entropy methods have also been widely 
used in order to provide complementary details to 
spectral measures.  

In Ref. [38], a combination of spectral measures and 
nonlinear methods applied to evaluate the diagnostic 
usefulness of an EEG-based methodology by means of 
different multiclass classifiers: quadratic discriminant 
analysis QDA, multi-layer perceptron neural network 
(MLP), and logistic discriminant analysis (LDA) is 
undertaken. The Relative Power (RP) in Deep Neural 
Network metric enumerates the abnormal EEG pattern 
and distinguishes HC and MCI. In Ref. [58], the authors 
analyze the Electroencephalogram (EEG) signal, extract 
the features using Fast Fourier Transform (FFT) and 
classify the disease by CNN with good accuracy. A brief 
comparative study for result analysis for Alzheimer’s 
classification is shown in Table 7. 

6.2 Dataset for Alzheimer’s disease   
The most widely used databases like ADNI 
(http://adni.loni.usc.edu), AIBL (http://aibl.csiro.au), and 
OA-SIS (www.oasis-brains.org) [54] provides clinical, 
genetic, MRI images open source databases for 
Alzheimer’s. Most researchers have used EEG data 
recording with the permission of a clinical institution; in 
this case, data can be available upon request. As in 
Ref. [62], the database was recorded in real clinical 
conditions at Charles-Foix Hospital (Ivry-sur-Seine, 

France), data is available by mail request. Likewise, 
some researchers publish their data for research use, as in 
the study was conducted on mild AD and normal 
participants. This data includes EEG from 4 channels 
(Fp1-FzCz-Pz) with A1 earlobe as reference. The 
sampling frequency is 200 Hz.   

7 Discussion  
We conducted a comprehensive study for diagnosis of 
Epilepsy, ADHD and Alzheimer. This study 
demonstrated that EEG characteristics could be used for 
diagnosis of neurological disorders, but we found several 
limitations and issues also. The selection of 
methodologies used to compare the research between 
them is a significant challenge when examining the 
literature. Differences in the selection of participants, 
EEG acquisition method and interpretation, could 
influence performance. This lack of standards presents a 
general confound for the field that extends beyond the 
implications for particular study.  

The core problem is the limited number of 
participants with respect to the large number of features 
and tests that have been applied, therefore overfitting 
may be unavoidable [25, 62]. Likewise, heterogeneity in 
etiology, symptoms and treatment outcomes have 
affected the accuracy of EEG analysis. Symptoms also 
change over time as the subject ages; features of EEG 
change accordingly.  

Table 7 Comparison of Studies on classification for Alzheimer’s. 

Sr.no  Year of 
Publication  Dataset  Features   Methods   

Overall best  
Accuracy  

(%)  

1  
[55]  

(2018)  

Subject: 37 AD, 37 MCI, 

and 37 elderly HC 

Channel: 19 

Sampling rate: 200Hz 

Recording: Resting state 

Spectral and 

nonlinear 

LDA 

QDA 

MLP for HC vs. All 

76.47 

78.43 

78.43 

LDA 

QDA 

MLP for AD vs. Al 

74.51 

74.51 

76.47 

2  
[59]  

(2016)  

Subject: 50 AD ,50 HC  

Channel: 19 
Sampling rate: 1024Hz  
Recording: Resting state  

ICA/Wavelet/ 

Spectral 
SVM 96 

3  
[60]  

(2019)  

Subject: 63 AD, 63 MCI, 

63 HC  

Channel: 19  

Sampling rate: 1024Hz  

Recording: Resting state  

Epoch 

CNN for AD vs. HC 

AD vs. MCI 

MCI vs. HC 

AD vs. MCI vs. HC 

92.95 

84.62 

91.99 

83.3 

PSD 

CNN for AD vs. HC 

AD vs. MCI 

MCI vs. HC 

AD vs. MCI vs. HC 

91.88 

78.63 

90.17 

78.49 

4  
[61]  

(2018)  

Subject: AD 16, 10 HC  

Channel: 128  
Sampling rate: 2000 Hz  
Recording: Resting state  

FFT, CWT Random Forest  83.49, 85.09  
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There is unavailability of long-term Open Access 
EEG Data for epilepsy. As epilepsy seizures do not occur 
continuously; the diagnosis of epilepsy needs long term 
EEG recording (more than 2–3 h at least). The lack of 
observations is one of the key explanations for the poor 
efficiency of prediction algorithms. The values in the 
observed data are almost zero, since the wearables or 
embedded devices with limited storage and storage space 
are not interconnected with each other for many potential 
reasons. Learning from corrupt or absent data did not take 
the machine learning community much into 
consideration. However, missing indicators must be 
added in models, which can provide important data to 
make predictions [22].  

In Ref. [28], the authors use statistical models for 
classification, which allows seizure detection 
simultaneously in the different brain rhythms, complying 
with current medical practices. However, it has some 
limitations wherein firstly it is difficult to define the 
sliding time window and the overlap between epochs 
because of the very high dynamics of epileptic signals. 
Second, it must define regularization conditions for the 
training phase so that random peaks, noise and devices 
can be taken into account that can contribute to false 
positive effects. Third, seizures have variable and 
dynamic offsets that represent the complicated existence 
of the various forms of epilepsy. For instance, if brain 
waves slow down, it is difficult to monitor changes from 
seizure to seizure and classification errors are created. 
Although the majority of research in seizure warning 
systems has focused on EEG-based methods for seizure 
detection, currently available systems suffer from poor 
sensitivity and specificity [35].  

Due to unnecessary extraction of features, time 
consumption and computing costs would increase. There 
is a need for quick predictions of relatively low power 
hardware and cheaper computer costs so that the ES 
prediction method can be implemented in real time. Even 
as DL have greatly rectified the problem of feature 
extraction from pre-processed data, the constraint is that 
these methods need a large amount of information to 
predict effectively [32].  

Many EEG studies probably indicate that they are 
homogeneous in their clinical classes. If this is not so, the 
group variations that have been identified do not 
adequately represent the magnitude of the EEG deviation 
in individual kids with ADHD [40]. Other major issues 
not effectively addressed are that of comorbidity; the 
simultaneous presence of two or more diseases or 
medical conditions in a patient such as autism, which is a 
learning disorder falling in the ADHD spectrum. We 
should expect to see differing and contradictory results in 
such cases [40]. Different researchers are studying EEG 
for different age groups. Major evidence suggests that 
EEG abnormalities in ADHD are influenced by gender in 
childhood but requires further investigation [39].  

Conclusion  
EEG signals are used as an authentic indicator which 
allows observing mental states and diseases related to the 
brain. It is used as the analyzing tool of neurological 
diseases, classification and rehabilitation. The 
methodologies of analyzing the diseases also differ 
according to the diseases. Some of the techniques to 
analyze EEG waveform uses time-frequency pre-
processing while others use focal waves to detect the 
active side in the EEG signal.   

In this manuscript, different signal analysis methods 
including linear, frequency domain, time-frequency, and 
nonlinear techniques are discussed for the detection of 
neurological disorders. This paper has also explored 
several diagnosis techniques for three prominent 
neurological disorders like Alzheimer’s disease, 
Epilepsy and ADHD along with a discussion on the 
limitations in the analysis of these disorders. With these 
details, various open sources data sets and tools are 
provided for further research for improving the 
automated prediction of neurological disorders. 
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Appendix A 
 

AD: Alzheimer’s disease  
ADHD: Attention-deficit/hyperactivity disorder  
ANOVA: Analysis of variance  
ApEn: Approximate entropy  
Bi-LSTM: Bidirectional Long short-term memory  
BSS: Blind Source Separation  
CNN: Convolutional Neural Network  
CTM: Central tendency measure  
CWT: Continuous Wavelet Transform  
DCNN: Deep Convolutional Neural Network  
DispEn: Dispersion entropy 
DSM: Diagnostic and Statistical Manuel of Mental 
Disorders  
DWT: Discrete Wavelet Transformation  
ECG: Electrocardiogram  
EEG: Electroencephalogram  
EMD: Empirical Mode Decomposition  
EMG: Electromyography  
EOG: Electrooculogram  
ERP: Event-related potentials  
EWT: Empirical wavelet transform  
fMRI: Functional Magnetic Resonance Imaging  
GGD: Generalized Gaussian distribution  
GRlVQ: Generalized relevance learning vector 
quantization  
HC: Healthy control  
ICA: Independent Component Analysis  
ICD: International Classification for Diseases  
iEEG: Invasive electroencephalography  
IMFs: Intrinsic Mode Functions  

KNN: K-Nearest Neighbor  
LDA: Linear Discriminant Analysis  
LS-SVM: Least-Squares Support Vector Machine  
LSTM: Long short-term memory  
MCA: Morphological component analysis  
MCI: Mild Cognitive Impairment  
MEG: Magnetoencephalogram  
MLP: Multi-layer Perceptron Neural Network  
MODWPT: Maximal over- lap discrete wavelet package 
transform  
mvSE: Multivariate Sample Entropy  
NIRS: Near Infrared Spectroscopy  
PCA: Principal Component Analysis  
PET: Positron Emission Tomography  
PSD: Power spectral density  
QDA: Quadratic Discriminant Analysis  
RBF: Radial basis function  
RK-LS-SVM: LS-SVM with RBF kernel  
rsEEG: Resting-state EEG  
SampEn: Sample Entropy  
SNR: Signal Noise Ratio 
SOP: Seizure Occurrence Period  
SPH: Seizure Prediction Horizon  
STFT: Short-time Fourier Transform  
SVM: Support Vector Machine 
TBAR: Theta/ (alpha + beta) ratio  
TBR: Theta/beta ratio  
TFA: Time-frequency Analysis  
WHO: World Health Organizations  
WT: Wavelet transform

 
 


