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Abstract: The Pazy wing aeroelastic benchmark is a highly flexible wind tunnel model investigated in
the Large Deflection Working Group as part of the Third Aeroelastic Prediction Workshop. Due to the
design of the model, very large elastic deformations in the order of 50% span are generated at highest
dynamic pressures and angles of attack in the wind tunnel. This paper presents static coupling
simulations and stability analyses for selected onflow velocities and angles of attack. Therefore,
an aeroelastic solver developed at the German Aerospace Center (DLR) is used for static coupling
simulations, which couples a vortex lattice method with the commercial finite element solver MSC
Nastran. For the stability analysis, a linearised aerodynamic model is derived analytically from
the unsteady vortex lattice method and integrated with a modal structural model into a monolithic
aeroelastic discrete-time state-space model. The aeroelastic stability is then determined by calculating
the eigenvalues of the system’s dynamics matrix. It is shown that the stability of the wing in terms of
flutter changes significantly with increasing deflection and is heavily influenced by the change in
modal properties, i.e., structural eigenvalues and eigenvectors.

Keywords: nonlinear aeroelasticity; VLM; geometric nonlinearities; large deformations; FEM; lineari-
sation; LTI system; stability analysis

1. Introduction

Striving for higher fuel efficiency in the aerospace industry is inevitably associated
with increased aerodynamic performance and reduced structural weight. The application
of high-performance materials, such as tailored composites, is state-of-the-art and enables
lightweight constructions provided sophisticated structural design and optimisation pro-
cesses are available. In addition to the construction of entire airframes using composite
materials, recent developments have shown an increasing flexibility of flight vehicles [1,2].
This is not only the case for Unmanned Aerial Vehicles (UAV) but also for large transport
aircraft and can bring advantages in terms of airframe stress and passenger comfort [3,4].
In addition, achieving higher efficiency by reducing the induced drag requires a wing with
a high aspect ratio. This leads to an increased wing span and thus to greater flexibility of
the wing, especially if a lightweight structure of composite materials is used, which can be
seen at certain UAVs and open class sail planes [5,6]. Thus, the geometrical nonlinearities
due to large deformations have to be taken into account in multi-domain analyses and in
the design process. From an aeroelastic point of view, the existing linear methods may
therefore no longer be suitable to describe the behaviour of very flexible flight vehicle
configurations. A remarkable example in this context is the Helios mishap in 2003, in which
the aircraft was destroyed during flight after it encountered turbulence and turned into a
persistent high-dihedral configuration. One of the key recommendations of the mishap
report was the development of multidisciplinary (structures, aerodynamic, controls, etc.)
models, which can describe the nonlinear dynamic behaviour of aircraft modifications,
as well as more advanced time-domain analysis methods appropriate to highly-flexible,
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morphing vehicles [7]. As a result, the development of nonlinear models and analysis
methods has become significantly more important in the global aeroelastic community.

Besides various aerodynamic nonlinearities considered (e.g., transonic regime, dy-
namic stall or vortex-induced vibrations), interest has been focused mainly on structural
nonlinearities caused by geometrically large deformations in recent years. This is the case
because the capabilities of current aerodynamic analysis, such as CFD methods, are already
far advanced, but there is a lack of adequate methods on the structural side. The most
common aeroelastic simulation tools are still based on a linear description of the airframe
and are expressed in the frequency domain. Therefore, recent studies on flexible aircraft
and wing structures often use and improve nonlinear modal approaches to account for
structural effects of large deformations, e.g., in references [6,8,9]. However, both the analy-
sis of aeroelastic systems as well as their optimisation require suitable methods to predict
and possibly use structural nonlinearities, e.g., for passive load alleviation. In this regard,
the verification and validation of aeroelastic analysis frameworks is heavily reliant on
comparable data from other numerical methods or experiments. Unfortunately, measured
data for experimental studies of highly flexible wings are still very limited, with the first
study conducted by Tang and Dowell [10] in 2001. A more recent study can be found
in reference [11]. For this purpose, the Large Deflection Working Group was formed as
part of the Third Aeroelastic Prediction Workshop (AePW3) [12] initiated by NASA. The
objective of this group is the aeroelastic investigation of the highly flexible Pazy wing wind
tunnel model, which was designed at the Technion—Israel Institute of Technology. Due to
the design of the model, very large static deformations of up to 50% with respect to the
wing semispan are generated at the highest dynamic pressures and angles of attack in the
wind tunnel. It is assembled from an Aluminum 7075 spar, and a PA2200, 3D printed rib
structure, which is covered by an Oralight polyester film mainly used for radio-controlled
aircraft. To simplify the modelling for computational methods and comparison of the
results, the geometry is very generic and consists of a rectangular planform without sweep,
taper and dihedral, as well as a symmetric NACA 0018 airfoil [2].

This paper presents the results of static and dynamic simulations of the Pazy Wing
for a range of dynamic pressures and angles of attack. The aeroelastic solver used couples
a vortex lattice method (VLM) with the commercial finite element solver MSC Nastran
and was successfully used for comparable aeroelastic simulations of complex wind tunnel
models and analyses of highly flexible aircraft in free-flight [1,9,13,14]. A brief description
is provided in Section 2.2.2. An incompressible flow field can be assumed regarding the
operating range of the wing; thus, potential-based methods are suitable to describe the
steady and unsteady aerodynamics of the system. The geometrical nonlinearities are
taken into account by using the nonlinear Nastran SOL400 sequence. Since the structural
properties are affected by the deformation of the wing, the change of mode shapes and
eigenvalues are determined as a function of the deformation. A very important part of
this work is the linearisation of the whole aeroelastic system at static equilibrium points
with large deformations. The derivation is therefore presented in Section 2.2 and is used to
determine the aeroelastic stability at these equilibrium points. The results of static coupling
simulations and stability analyses are shown in Section 3 and are compared to numerical
results from other members of the Large Deflection Working Group.

2. Simulation Framework and Modelling Approach

Nowadays, several numerical methods are available for modelling highly flexible
structures, with two distinct approaches currently considered as state of the art. The geo-
metrically exact, nonlinear beam theories provide an (computationally) efficient way to
account for large deformations if the structure of interest can be sufficiently modelled by
beam elements [15–18]. However, the application of this method can lead to problems
if more complex structures and detailed models are involved. In addition, out-of-plane
bending always occurs coupled with chordwise bending deformations in a 3D wing box,
also changing the camber of the wing. This effect is not considered when a beam type
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model is used. In this case, a more suitable approach is offered by the Lagrangian finite
element methods, where the FE mesh is fixed to the material and moves with it through
space. In contrast to linear analyses, the stiffness is not considered constant any more,
but changes due to the deflection of the structure. This leads to a change of the structural
response, which in turn affects the stiffness. In order to solve this problem, the Lagrangian
methods are based on incremental solution schemes, where the calculation is divided into
steps with increasing load factor and the so-called tangent stiffness matrix is updated
after each step [19,20]. While a proper and regularly updated tangent stiffness matrix is
crucial for fast convergence and few iteration loops, its evaluation is also a computationally
costly process, making this approach less time efficient especially for detailed FE models
undergoing large deformations.

2.1. Implementation of the Steady and Unsteady Vortex Lattice Method

Although a variety of different aerodynamic methods exist, there are several reasons
for the usage of a VLM in an aeroelastic toolbox as it is used for the simulations in this
paper [21]:

• It is computationally less expensive and faster than other solutions such as Euler or
CFD codes, which typically require high mesh resolutions.

• The method represents a medium-fidelity tool that incorporates 3D effects and inter-
ferences between wakes and lifting surfaces, which are neglected in 2D strip theory.

• The results are insensitive to large deformations in contrast to the doublet lattice method
(DLM), which is a linear method restricted to small out-of-plane displacements.

A detailed description of the underlying principles can be found in the comprehensive
work of Katz and Plotkin [22]. The fundamentals, however, are included in the following
for the sake of completeness.

Considering the flow conditions of the Pazy wing, low air speeds with Mach numbers
below 0.3 and high Reynolds numbers between 105 and 3.5 × 105 are expected. Thus,
the flow field can be regarded as incompressible, while viscosity has only a minor influence
and can therefore be neglected. Assuming an irrotational and inviscid flow, the velocity at
each point of the flow field is obtained by the gradient of the so-called velocity potential φ.
In combination with the continuity equation, the velocity potential is found by the elliptic
differential equation

∇2φ = 0, (1)

which is also known as Laplace’s equation. The solution of this equation leads to a boundary-
value problem, whereas for aerodynamic problems, the boundary conditions have to
be defined on all solid surfaces and at infinity. For solid walls, the boundary condition
is specified so that there is no normal flow through the solid surface on the boundary.
The second boundary condition states that the disturbances due to a body moving through
a fluid at rest vanish at infinity. By applying one of Green’s identities, a general solution of
Laplace’s Equation is possible by using a distribution of elementary solutions, e.g., sources
or doublets, on the boundaries of the problem. In the particular implementation used for
this work, these so-called singularity elements are vortex rings with constant circulation
(VLM of zero order). For the problem solution, it is then only necessary to find a distribution
of the singularity elements, which fulfils the (zero) normal flow condition. With the flow
field being discretised by singularity elements influencing each other, the problem finally
reduces to a set of algebraic equations [9]:

AIC · Γ = RHS. (2)

The normal component of the velocity induced by each element at certain control
points, called collocation points, is expressed by the aerodynamic influence coefficients
matrix AIC. In general, the calculation of these influence coefficients is based on the
Biot-Savart law for the velocity induced at a point P by a straight (uniform strength) vortex
segment. On the other hand, the boundary conditions, namely the zero normal flow
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condition and the Kutta condition, are enforced in the right hand side RHS, which contains
all kinematic velocity components of the wing. This includes the rigid body motion of the
wing and the velocities induced by the wake vortices, as well as any velocity due to an
elastic deformation of the wing or encountered gusts. It is calculated for each panel i as

RHSi = −
(
V rb,i + Vwake,i + V gust,i + V elastic,i

)
· ni, (3)

with ni being the panel normal vector at the collocation point. Equation (2) is then solved
for the unknown circulation Γi of each panel, which in turn can be used to determine the
local pressure distribution and loads.

For the VLM in general, a thin wing planform with infinitesimal thickness and a free
wake is assumed. The flow domain is divided into N quadrilateral surface panels and Nw
additional wake panels containing rectilinear vortex rings. Each vortex ring consists of
a closed vortex line, with the leading segment located on the panel’s quarter chord line
and the collocation point at the centre of the three-quarter chord line. The vortex rings
are placed on the wing’s camber line of each lifting surface, i.e., no thickness effects are
modelled. In case of a steady flow field being examined, the strength of all wake vortex
panels is equal to the shedding trailing edge panel. The wake vortices can therefore be
seen as horseshoe-like vortices with side vortex lines parallel to the free-stream. In order to
describe an unsteady flow field, the solution process presented has to be embedded into a
time stepping loop with time step size ∆t. For each time step, a wake panel with a vortex
strength equal to its circulation in the previous time step is shed by the trailing edge vortex
panel, generating a new row of wake vortex rings. The strength of the wake vortex rings
remains unchanged once they have been shed, which inherently fulfils the Kelvin theorem.
As the wake shedding procedure becomes computationally demanding with increasing
number of time steps and wake length while the influence of the wake rows far behind the
wing is negligible, the wake is truncated at a predefined length to save computational costs.

The calculation of the aerodynamic forces FA
i in this particular implementation is

based on the method by Mauermann [23] and yields [6]

FA
i = FA

S,i + FA
U,i. (4)

The steady forces FA
S,i can be calculated by

FA
S,i = ρ∞ Γe f f ,i

(
V RB,i + V gust,i + V elastic,i

)
× ri, (5)

where ρ∞ is the fluid density and ri is a vector of length b equal to the quarter chord line
of the corresponding aerodynamic panel i. Furthermore, Γe f f ,i denotes the effective circu-
lation, which is either the difference of the circulation of the corresponding aerodynamic
panel and the adjacent panel in chordwise downstream direction, or the circulation of
the corresponding panel itself, if the panel is located at the leading edge. The unsteady
aerodynamic forces FA

U,i are found as

FA
U,i = ρ∞ Ai

∂Γi
∂t

ni, (6)

with Ai being the area of the i-th panel, Γi the bound circulation and ni the normal vector.
The time derivative of the circulation is discretised by a backward-differential scheme
of first order. From Equations (5) and (6), it can be observed that the steady forces act
perpendicular to the quarter chord line and the direction of the total velocity vector, while
the unsteady forces act along the normal vector of the panel. However, both steady and
unsteady forces act at the centre of the panel’s quarter chord line or the centre of each
bound vortex ring, respectively.
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As the steady aerodynamic forces act perpendicular to the sum of all velocity contri-
butions, no drag components are included in these forces. Instead, the induced drag FA

D,i
can be calculated separately using the relation [6]

FA
D,i = ρ∞ Γe f f ,i

(
V bodystreamwise,i + V wake,i

)
× ri, (7)

where V bodystreamwise,i and V wake,i denote the velocities induced by the streamwise segments
of the bound vortex rings and all segments of the wake vortex rings, respectively. Neverthe-
less, the VLM does not account for viscous drag forces. This problem can be circumvented,
e.g., by approximating the viscous drag forces using the drag polars of the wing’s airfoil [6].

As already mentioned before, the aeroelastic solver used for this work couples the
VLM with the commercial FE solver MSC Nastran. Thus, a coupling interface is required
to exchange data between both solvers. In addition, the application of two different solvers
also leads to the problem of two different and independent models, which means that the
aerodynamic forces cannot be applied directly to the structural nodes. This typical problem
of fluid–structure interaction (FSI) can be solved using the following relations [6]:

uA = H uS and (8a)

FS = HT FA. (8b)

The former describes a linear mapping of the displacements of the structural nodes uS

to obtain the displacements of the aerodynamic grid points uA using the coupling matrix
H. The latter equation is used to transform the aerodynamic forces FA into equivalent
forces FS applied to the structural model. For both operations, the same coupling matrix
can be used either in normal or in transposed form, taking into account both the global
conservation of work as well as the correct description of the structural deformations.
Therefore, the coupling matrix of the aeroelastic solver used is based on two- and three-
dimensional radial basis functions, which only evaluate the positions of the structural nodes
and the aerodynamic grid points. Radial basis functions have become a common tool
for multivariate interpolation in fluid–structure interaction, with various functions being
available for different applications [24]. In this particular solver, the thin-plate-spline basis
function for three-dimensional structural models was implemented [6].

2.2. Linearisation of the Aeroelastic Model

In order to determine the dynamic stability of the Pazy wing, a method for aeroelas-
tic stability analysis of highly flexible wings will be derived in this section. To this end,
the whole aeroelastic system is linearised at static equilibrium points with large deforma-
tions. At first, the goal is to create a linear state-space model for the aerodynamic model,
where equations will be derived from the unsteady VL implementation. Afterwards, the lin-
earisation of the structural response using a modal approach in generalised coordinates
is straightforward. Once both aerodynamics and structural dynamics are represented by
linear state-space models, these can be combined and integrated into a monolithic linear
state-space model to describe the system’s aeroelastic behaviour. However, this paper
focuses on the main parts of the linearisation. A detailed description of the derivation can
be found in [25].

2.2.1. Derivation of the Linearised Aerodynamic Model

Building a state-space system usually begins with the identification of the state vari-
ables of the system. These should allow a complete description of the system’s motion.
Considering the aerodynamic model of an aeroelastic system, the relevant variables might
be the aerodynamic forces interacting with the structure. In the case of the vortex lattice
method, however, it can be seen that the aerodynamic forces are functions of the circulation
Γ. The basic formulation of the vortex lattice method in Equation (2) in combination with
the RHS vector in Equation (3) yields
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AIC · Γb = RHS = −
(
V rb + V wake + V gust + V el

)
· n. (9)

Here, Γb denotes the circulation of bound panels, V rb the rigid body velocity (onflow
velocity in a windtunnel test case), while Vwake and V el are the velocities induced by
the wake and an elastic deformation of the wing. The wake-induced velocities can be
calculated as

V wake = W IC · Γw, (10)

where W IC is called the wake influence coefficients matrix, which is determined in a sim-
ilar way to the AIC matrix but includes the influence coefficients of the wake vortices
with circulation Γw on the collocation points of the bound vortices. The introduction of
Equation (10) into Equation (9) and solving for Γb leads to

Γb = −AIC−1 · (W IC · Γw + V rb + V el) · n. (11)

Using this equation, the circulation of the bound panels can be expressed by the
circulation of the wake panels. Thus, the steady aerodynamic forces AFs, as well as the
unsteady aerodynamic forces AFu, can be described as a function of the wake circulation,
as will be shown later on. The wake circulations can therefore be regarded as the states that
describe the motion of the system. The state vector at the current time step n is accordingly
designated Γn

w in the following. At this point, it has to be decided whether the system
should be formulated as a discrete-time or continuous-time state-space model. Since the
unsteady VLM already uses a time-stepping procedure with discrete time steps, it seems
reasonable to use a discrete-time state-space model for the further derivation. In this case,
the system is specified to find the solution of the next time step. The evolution of the wake
circulation is defined by the wake-shedding process that is described in Section 2.1 and
consists of two different operations. In the first step, the wake vortex rings are shifted by
one panel in the downstream direction and a new row of wake vortex rings is created at
the trailing edge of the wing. Afterwards, the circulation from the wing trailing edge row
is transferred to this new wake row. This routine can be written as

Γn+1
w = Mb · Γn

b + Mw · Γn
w, (12)

where Mb is the matrix for transferring the bound circulation from the trailing edge row
and Mw is the matrix for shifting the wake rows. The result of this equation is the wake
circulation at the next time step Γn+1

w . Substitution of Γb using Equation (11) results in

Γn+1
w = −Mb · AIC−1 · (W IC · Γn

w + V rb + V el) · n + Mw · Γn
w, (13)

with Mb, Mw, AIC−1 and W IC being constant matrices. Hence, the wake circulation Γn+1
w

during the next time step is only a function of the current wake circulation Γn
w, the velocities

V rb and V el , as well as the panel normal vectors n. Referring to the basic formulation of
discrete-time state-space models, which is

xn+1 = Axn + Bun, (14)

only the variables of the input vector un have to be defined, since the state vector xn has
already been designated as Γn

w. Accordingly, only the velocities V rb, V el and the panel
normal vectors n are available as input variables. As the model will be used to describe
the dynamic behaviour at a static aeroelastic equilibrium, the rigid body velocity V rb can
be assumed constant. For this reason, the velocity V el and the panel normal vectors n are
chosen to be part of the input vector due to the elastic motion of the wing, while V rb will
be included in the control matrix B. Equation (13) can then be rewritten in matrix notation:
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{
Γw
}n+1

=
[
Mw −Mb · AIC−1 ·W IC · n

]︸ ︷︷ ︸
A A

·
{

Γw
}n︸ ︷︷ ︸

Ax

+
[
−Mb · AIC−1 · cV rb −Mb · AIC−1 · n

]︸ ︷︷ ︸
AB

·
{

n
cV el

}n

︸ ︷︷ ︸
Au

.
(15)

This equation describes a state-space system in discrete-time formulation, as shown in
Equation (14). The index c indicates that the velocities are related to the collocation points
of the aerodynamic panels. It can be seen that n appears both in the A A and in the AB
matrix, although it is defined as an input of the system. Due to the linear character of the
system, the amplitudes of the described motion and thus the changes in the normal vectors
are assumed to be small. In this case, the assumption of constant normal vectors in matrices
A A and AB seems appropriate. Furthermore, the effect of a change in the normal vectors is
also taken into account, since n is a part of the input vector. The behaviour of the system’s
states over time can now be determined completely using the equation

{
Γw
}n+1

=
[A A

]
·
{

Γw
}n

+
[AB1

A,cB2
]
·
{

n
cV el

}n

, (16)

where A A ∈ Rnw×nw and AB ∈ Rnw×6nb are referred to as aerodynamic dynamics and
input matrix, while Ax ∈ Rnw and Au ∈ R6nb are the aerodynamic state and input vector,
respectively. Furthermore, nb denotes the number of bound panels and nw the number of
wake panels.

It is now possible to describe the resulting aerodynamic forces as outputs of the
state-space system, according to the relation

yn = Cxn + Dun. (17)

In the unsteady vortex lattice solver that was used, the total forces are the sum of the
steady and unsteady aerodynamic forces. The steady aerodynamic forces AFs are given by

AFs,i = ρ · Γe f f ,i ·
(
V rb,i + V el,i + V gust,i

)
× ri. (18)

The index i, representing the number of the (bound) aerodynamic panel considered, is
disregarded in the following for the sake of simplification. The effective circulation Γe f f is
defined as the difference of the circulation of the corresponding aerodynamic panel and
the adjacent panel in chordwise downstream direction, except for the panels at the leading
edge. It is calculated from the bound circulation using

Γe f f = Me f f · Γb, (19)

where Me f f ∈ Rnb×nb . Introducing Equation (19) together with Equation (11) into Equation (18)
and rearranging the equations results in

{AFs
}n

=
[ACs

]
·
{

Γw
}n

+
[ADs,1

A,qDs,2 +
A,cDs,2

ADs,3
]
·


n

q|cV el
r


n

. (20)

As can be seen, the steady forces depend on the state variables Γw and the input
variables V el and n. In addition, the vector r, pointing in the direction of the quarter
chord line of the aerodynamic panels, is now also part of the input vector. The index
q is introduced as the velocities for calculating the aerodynamic forces are evaluated at
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the quarter points of the panels. The steady aerodynamic sensor matrix ACs and the
sub-matrices of the steady aerodynamic direct term ADs are defined by

ACs =
[
ρ · r̃skew · qṼ rb ·Me f f · AIC−1 ·W IC∗

]
∈ R3nb×nw , (21)

ADs,1 =
[
ρ · r̃skew · qṼ rb ·Me f f · AIC−1 · cṼ T

rb

]
∈ R3nb×3nb , (22)

A,qDs,2 =
[
ρ ·Me f f · AIC−1 · cṼ T

rb · ñ · r̃skew

]
∈ R3nb×3nb , (23)

A,cDs,2 =
[
ρ · r̃skew · qṼ rb ·Me f f · AIC−1 · ñT

]
∈ R3nb×3nb , (24)

ADs,3 =

[
− ρ ·Me f f · AIC−1 ·

(
W IC∗ · Γ̃w0 · Ṽ rb,skew

+ Ṽ T
rb · ñ · Ṽ rb,skew

)]
∈ R3nb×3nb ,

(25)

with W IC∗ = W IC · n.

Here, the vectors q|cV rb, n and r are transformed into the equivalent matrices q|cṼ rb, ñ
and r̃ containing the entries for each panel blockwise in diagonal form. In order to evaluate
the cross-product between the velocities and the vector r (cf. Equation (18)), these appear
as skew-symmetric matrices in some places. At this point, it has to be mentioned that the
steady wake circulation Γ̃w0 obtained from the steady-state solution at static aeroelastic
equilibrium is included in the direct term ADs,3. This is the case since aerodynamic forces
are always follower forces, and thus, any deformation of the wing will generate additional
loads as the direction of forces changes with the lifting surface (in this case expressed by the
vector r). The impact of steady aerodynamic loads on the aeroelastic stability is particularly
important in the context of T-tail flutter [26] but can also influence the stability of flexible
wings with large deformations, as will be shown later.

While the steady forces depend on the bound circulation in the original vortex lattice
implementation, the unsteady aerodynamic forces AFu depend on the time derivative of
the bound circulation rather than on the bound circulation itself. These can be determined
using the relation

AFu = ρ · Ap ·
∂Γb
∂t
· n, (26)

where Ap denotes the panel areas of the corresponding bound panels. Again, Equation (11)
can be introduced into this equation, resulting in the unsteady forces being described as a
function of the state and input vectors as well as their first time derivatives. While the latter
are regarded as additional inputs to the system, the time derivative of the wake circulation
is calculated using the first-order forward scheme

∂Γw

∂t
≈ Γn+1

w − Γn
w

∆t
, (27)

with ∆t being the time step size. In order to use this scheme in a discrete-time state-space
formulation, the time derivative is now calculated by the difference between the next time
step n + 1 and the current time step n. By substituting Γn+1

w using Equation (16) and further
arrangements, the unsteady forces can be expressed as

{AFu
}n

=
[ACu

]
·
{

Γw
}n

+
[ADu,1

A,cDu,2 0 ADu,4
A,cDu,5

]
·


n

cV el
r
ṅ

cV̇ el



n

. (28)
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Five instead of three different input variables are included in this equation. However,
the state vector only contains the wake circulation Γw, and the corresponding unsteady
aerodynamic sensor matrix ACu is

ACu =
[
−ρ · 1

∆t
· ñ · Ãp · AIC−1 ·W IC∗ ·

(
A A− I

)]
∈ R3nb×nw , (29)

where I denotes an identity matrix. The sub-matrices of the unsteady aerodynamic direct
term ADu can be determined by

ADu,1a =
[
−ρ · 1

∆t
· ñ · Ãp · AIC−1 ·W IC∗ · AB1

]
∈ R3nb×3nb , (30)

ADu,1b =
[
−ρ · 1

∆t
· Ãp · AIC−1 ·W IC∗ · AB1 · ñ

]
∈ R3nb×3nb , (31)

ADu,1c =
[
−ρ · 1

∆t
· Ãp · AIC−1 ·W IC∗ ·

(A A− I
)
· Γw0

]
∈ R3nb×3nb , (32)

A,cDu,2 =
[
−ρ · 1

∆t
· ñ · Ãp · AIC−1 ·W IC∗ · AB2

]
∈ R3nb×3nb , (33)

ADu,4a =
[
−ρ · ñ · Ãp · AIC−1 · cṼ rb

T
]
∈ R3nb×3nb , (34)

ADu,4b =
[
−ρ · ñ · Ãp · AIC−1 ·W IC · Γw0

]
∈ R3nb×3nb , (35)

A,cDu,5 =
[
−ρ · ñ · Ãp · AIC−1 · ñT

]
∈ R3nb×3nb . (36)

Again, the effect of the steady loads is taken into account by including the steady
wake circulation in matrices ADu,1c and ADu,4b. Finally, the total aerodynamic force vector
AF is obtained from the sum of steady and unsteady forces:{AF

}n
=
[ACs + ACu

]
·
{

Γw
}n

+
[

ADs,1 +
ADu,1

A,q|cDs,2 +
A,cDu,2

ADs,3
ADu,4

A,cDu,5

]
·


n

q|cV el
r
ṅ

cV̇ el



n

.
(37)

As can be seen, the calculation of drag forces has not yet been considered in the
linearisation of the aerodynamic forces. The reason for this is that the induced drag—
according to its definition in Equation (7) and with the current formulation of the state-
space model—would depend quadratically on the state and input variables. A similar
problem was encountered for several higher-order terms in the steady and unsteady forces,
which could not be modelled by a linear system and therefore had to be neglected in the
linearisation. The steady-state induced drag included in the steady loads at static aeroelastic
equilibrium, however, will be integrated into the monolithic aeroelastic state-space model
presented in the following section.

2.2.2. Derivation of the Linearised Aeroelastic Model

In contrast to the derivation of the aerodynamic model, the derivation of the linear
structural model is straightforward and is widely presented in the literature. A detailed
description of the linearisation process is therefore omitted at this point but can be found,
e.g., in [27]. Considering the second-order structural equation of motion in generalised
coordinates with inertia, stiffness and (rayleigh) damping terms, this equation can be
expressed by
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{
q̇1,i
q̇2,i

}
=

[
0 1
−Ωi −Di

]
︸ ︷︷ ︸

S A

·
{

q1,i
q2,i

}
︸ ︷︷ ︸

Sx

+

[
0

Φi
T

]
︸ ︷︷ ︸

SB

·
{SF

}︸ ︷︷ ︸
Su

,
(38)

(i = 1, 2, . . . , nm),

which is a linear continuous-time state-space system of the form ẋ = Ax + Bu. Here, Ωi
are the squares of the natural frequencies ωi and Φi are the mass-normalised eigenvectors
of each mode i. In order to account for the effect of geometric nonlinearities, the eigen-
frequencies and eigenvectors are obtained from an eigenvalue analysis of the preloaded
structure. The number of modes considered is designated nm, S A ∈ R2nm×2nm denotes the
structural dynamics matrix and SB ∈ R2nm×3n f e the structural control matrix, where n f e is
the number of FE nodes. The state vector Sx ∈ R2nm contains the generalised coordinates
q1 for the considered modes and the first time derivatives of the generalised coordinates
q2 which can be seen as the generalised velocities. The structural input vector SF ∈ R3n f e

includes the structural force components acting on all nodes of the finite element model.
In order to merge both linearised models, the structural model needs to be transformed

from continuous into discrete-time formulation. The conversion is done by means of the
so-called matrix exponential, and the equivalent discrete-time system of the structural
model yields{

q1
q2

}n+1

=
[
e(∆t · S A)

]
︸ ︷︷ ︸

S Ā

·
{

q1
q2

}n

+
[

S A−1 ·
(

e(∆t · S A) − I
)
· SB

]
︸ ︷︷ ︸

S B̄

·
{SF

}n, (39)

with ∆t representing the desired time step size. The integration of both the structural
and the aerodynamic model into a monolithic aeroelastic state-space system is performed
by expressing the inputs of one system with the states of the other system. Recalling
Equations (16) and (37) of the aerodynamic model, the inputs are the quarter-chord line
vectors r, the panel normal vectors n, the elastic velocity V el and their time derivatives
ṅ and V̇ el , respectively. It is obvious that the normal vectors change depending on the
deformation of the wing, where the deformation can be directly expressed using the modal
approach. The normal vectors, however, are determined using the relation

n =
nm

∑
i=1

∂n
∂Φi
· q1,i, (40)

where ∂n
∂Φi

is the partial derivative of the panel normal vectors with respect to the eigenvec-
tors of the i-th mode. This expression describes the change in n due to a small excitation
of each mode around the static aeroelastic equilibrium. Since no analytical approach for
the calculation of the partial derivative was found, the derivative is determined by a finite-
difference approach during preprocessing. The quarter-chord line vectors r are also only
dependent on the grid deformation and are thus defined in a similar manner as the normal
vectors in Equation (40).

The elastic velocity V el is obtained using the modal approach, but with the generalised
velocity q2 instead of the generalised deflection q1. In this context, two problems are
encountered due to the different models of the solution methods. The resulting physical
coordinates are still related to the structural grid describing the motion of the FE nodes,
while the inputs V el need to be defined at the collocation points of the aerodynamic grid.
Therefore, the velocities have to be interpolated onto the aerodynamic grid points using
the coupling interface introduced in Section 2.1. Afterwards, the elastic velocities must be
interpolated from the aerodynamic grid points to the collocation points. Thus, the velocities
due to the elastic deformation of the wing can be expressed by
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cV el = Mcp · Hd ·Φ · q2, (41)

where Hd denotes the coupling matrix for mapping displacements between structural and
aerodynamic grid, and Mcp is a matrix for interpolation from the aerodynamic grid points
to the collocation points. Using these new relations for n and V el , the evolution of the
aerodynamic state vector can finally be written as

{
Γw
}n+1

=

[
A A︸︷︷︸
A11

... AB1 ·
∂n
∂Φ︸ ︷︷ ︸

A12

... A,cB2 ·Mcp · Hd ·Φ︸ ︷︷ ︸
A13

]
·


Γw
q1
q2


n

. (42)

Thus, the aerodynamic states at the next time step now only depend on the extended
dynamics matrix, including the additional sub-matrices A12 and A13 of dimension nw × nm.
Furthermore, the state vector has been expanded by the two generalised coordinates of the
structural state vector.

The integration of the structural model is performed similarly to the aerodynamic
model. In this case, the structural forces SF are derived from the resulting total aerodynamic
forces AF by

SF = H f
T · AF, (43)

where H f is the coupling matrix for transferring the forces from the aerodynamic grid to
the structural grid. In contrast to the integration of the aerodynamic model, two additional
input variables must be handled for the integration of the total aerodynamic forces into
the structural model. The time derivative ṅ of the panel normal vectors is obtained similar
to Equation (40) using the modal approach with the generalised velocity q2. Accordingly,
the elastic acceleration V̇ el can be expressed in a similar way as the elastic velocity V el
by the generalised acceleration q3. By means of these relations, the aerodynamic forces
are defined as functions of the aerodynamic and structural states and are introduced into
the structural state-space system. As both aerodynamic and structural model are now
related to the same state vector, they can be finally merged to build a linear, discrete-time
state-space model for the entire aeroelastic system:

Γw
q1
q2
q3
f d



n+1

=


A11 A12 A13 0 0
A21 A22 A23 A24 A25
A31 A32 A33 A34 A35
A41 A42 A43 0 0
0 0 0 0 I

 ·


Γw
q1
q2
q3
f d



n

. (44)

Using this equation, it is possible to describe the aeroelastic behaviour of a highly flexi-
ble wing at any deformed state of steady aeroelastic equilibrium. In general, the state vector
of this system is of dimension Rnw+4nm , i.e., the number of wake panels plus four times the
number of modes considered in the modal approach. Here, the discrete-time formulation
is favourable in terms of verification as it allows for time-marching and straightforward
comparison with reference results from solvers in the time domain. Besides these ad-
vantages, the unsteady VLM used for the derivation of the linear aerodynamic model is
already formulated in discrete time. As the linear structural model is originally formulated
in continuous time, one of both models has to be converted for the integration of both
models into a monolithic state-space model. The transformation of a continuous into a
discrete time model using the matrix exponential, however, is much easier than vice versa.
Since the generalised acceleration q3 is not provided by the linearised structural model
in discrete-time formulation (cf. Equation (39)), it is approximated from the generalised
velocity q2 by

qn+1
3 ≈

qn+1
2 − qn

2
∆t

, (45)
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which represents a first-order backward scheme to account for the state-space formulation
of q3 at the next time step. Both components of this equation are included in the aeroelastic
state-space model and can be easily expressed by the third line of Equation (44). The inte-
gration of this additional state is important for modelling the elastic acceleration V̇el , which
is mandatory since it accounts for almost half of the unsteady forces (depending on the
reduced frequency) [25]. Besides, the steady induced drag is also taken into account by
means of the generalised (structural) drag forces f d, which are obtained from the induced
(aerodynamic) drag forces AFd at static aeroelastic equilibrium using

f d = ΦT · H f · AFd. (46)

However, as can be seen from Equation (44), these forces do not change dynamically
but are added as a static component to the system to prevent possible instabilities of
modes involving in-plane motions. The consideration of viscous forces has not yet been
integrated, but could be realised in a similar way as the induced drag, i.e., using a static
state that only accounts for the viscous drag at steady aeroelastic equilibrium. In the
existing VL implementation, the viscous forces can be approximated using drag polars of
the wing’s airfoil, where the results showed good agreement with CFD results for steady
simulations [1].

For the verification of both the aerodynamic and the aeroelastic state-space model,
the results of time-domain simulations for generic test cases are compared to results from
an existing unsteady VL solver and a nonlinear aeroelastic modal solver. A detailed
description of the verification process can be found in [25]. The results of the verification
test case for the undeformed (0◦ AoA) Pazy wing structural model are presented in Figure 1,
which depicts the evolution of the unsteady forces and the generalised coordinates over
time for a free vibration of the wing due to small disturbances. These disturbances are
realised by a small deformation of the wing, which can be achieved by setting an initial
value for the generalised coordinate q1. For simplification, only the lowest four natural
modes are taken into account, which are the first (q1,1), second (q1,2) and third (q1,4) out-of-
plane bending modes as well as the first torsion mode (q1,3). For this case, the results agree
very well for the three bending modes. Considerable differences appear in the evolution of
the first out-of-plane bending DOF (q1,1). However, since these differences occur mainly at
the beginning of the simulation, they may be caused by an issue regarding the unsteady
forces in the modal solver. These are determined using a first order backward scheme,
which results in significantly larger forces for the first time step. Other reasons might be
the force terms neglected during the linearisation and, of course, the fact of comparing the
solution of a linear state-space model to a fully nonlinear modal solver also accounting for
geometric nonlinearities.
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Figure 1. Cont.



Aerospace 2021, 8, 308 13 of 29

g
e

n
. 
c
o

o
rd

. 
q

1
,2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.002

g
e

n
. 
c
o

o
rd

. 
q

1
,1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.0015

u
n
s
te

a
d

y
 f

o
rc

e
s
 z

, 
N

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-5

0

5

nonlinear modal solver

linearised model

g
e

n
. 
c
o

o
rd

. 
q

1
,3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.001

0

0.001

time, s

g
e

n
. 
c
o

o
rd

. 
q

1
,4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.001

0

0.001

0 0.01 0.02
0

50

Figure 1. Comparison of results obtained by nonlinear modal solver and linear aeroelastic state-space
model for Pazy wing structural model with V∞ = 50 m/s, q0

1,i = 0.001.

2.3. Aeroelastic Framework and Solution Sequence

The aeroelastic simulations used to determine the steady static equilibrium points are
performed by applying a steady iterative coupling loop. Here, the aerodynamic solution
is obtained by the steady vortex lattice implementation, whereas the structural solution
is computed separately using the MSC Nastran FE solver. The general workflow of the
static coupling solution sequence is illustrated in Figure 2. In addition to the setup of
the aerodynamic model, the initialisation process also includes the setup of the FE model
and the coupling model as a preprocessing step. The aerodynamic forces are calculated
as a function of the circulation and transformed into equivalent structural forces. Since
a partitioned approach is used for solving the FSI problem in this aeroelastic framework,
interface functions are available to provide the Nastran loadcard and read the results
file of the nonlinear SOL400 sequence. Convergence is checked in terms of structural
displacements, and the iterative loop is stopped once a specified residuum is reached.
Before each new iteration loop, the VL grid as well as the coupling matrix and the AIC
matrix are updated with respect to the structural deformations.

The stability analysis of the aeroelastic system is preferably described using the
flowchart of the linearised static coupling solution sequence in Figure 3. When convergence
of the static coupling loop is reached, the structural solution using Nastran SOL400 is
extended by a modal analysis on the preloaded structure following the nonlinear static
analysis. Subsequently, the wake of the steady solution, which consists only of one row
of long wake vortex rings, is divided into a number of equal-length wake rows to obtain
a wake similar to that of an unsteady solution. The stability of the aeroelastic system is
evaluated by solving the homogeneous eigenvalue problem for the dynamics matrix of the
monolithic state-space model. In this particular case, the complex eigenvalues obtained
appear in the discrete-time form z, and the system is only stable if the magnitudes of all
eigenvalues are smaller than one (eigenvalues located inside the unit circle in the complex
z-plane). As this representation is not suitable for common illustration methods, such as
root-locus or V-g and V-ω plots, the eigenvalues are converted into continuous-time form
by [21]

λi =
log zi

∆t
. (47)
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Figure 2. Steady iterative coupling solution sequence including Nastran nonlinear static solution.

Afterwards, the real parts of the eigenvalues represent the decay ratios and the
imaginary parts represent the frequencies of the system’s modes. The system is then
regarded as internally stable, if all eigenvalues λi have a strictly negative real part [27].
In summary, the presented method for stability analysis accounts for all three nonlinear
effects involved in highly flexible wings undergoing large deformations. This includes the
change in structural eigenvalues and eigenvectors due to the deformation, the change in
the AIC matrix due to varying wing geometry, as well as the effect of steady aerodynamic
loads at aeroelastic equilibrium.
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Preprocessing/initialisation

Set angle of attack and velocity

Run static coupling solution

sequence (Fig. 2):

• calculate static aeroelastic
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• calculate preloaded eigen-
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Divide steady wake into nw 

wake panels and calculate

WIC matrix
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Identify eigenvalues of structural
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• Re λi � damping ratio
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Write results file:

• eigenvalues and eigenvectors

  of linearised aeroelastic system

Figure 3. Linearised static coupling solution sequence including a time-marching procedure (optional)
and the stability analysis.

2.4. Structural and Aerodynamic Simulation Models

The Pazy wing aeroelastic benchmark was primarily designed to undergo very large
deformations of up to 50% in wind-tunnel tests. Two different models were built, whereas
two ribs were added at the wing root of the second model. While the design has not
been changed for the most part, both models slightly differ in terms of their natural
frequencies. Unfortunately, the first model, called Pre-Pazy wing, was destroyed early
during a wind-tunnel test campaign, so experimental data are only available for the second
model. The simulations in this work, however, are performed exclusively for the Pre-Pazy
wing, as the FE model for the second wing was not yet available at the beginning of
these studies.

The wing, shown in Figure 4, has a span of 550 mm and a chord length of 100 mm
with a symmetric NACA 0018 airfoil. It is assembled from an Aluminum 7075 spar and a
PA2200, 3D printed rib structure. This is covered by an Oralight polyester film, which is
applied by ironing and shrinks once the heat source is removed, resulting in a prestressing
of the foil. This approach is chosen to ensure a smooth surface of the closed profile around
the wing and to prevent buckling even at states of large deformations. As can be seen,
a wing-tip rod is part of the 3D printed chassis, which can be used for attaching weights to
modify the structural characteristics and thus the dynamic behaviour and the flutter speed.
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Important aerodynamic and geometrical properties of the Pazy wing are listed in Table 1,
while a detailed description of the wing can be found in references [2,28].

Figure 4. The (Pre)-Pazy wing wind tunnel model (Reproduced with permission from Drachinsky [2];
published by IACAS, 2020).

Table 1. Properties of the Pazy wing (data from [2]).

Property Measurement

Span 550 mm
Chord 100 mm
Area 0.055 m2

Main spar 550 × 60 × 2.5 mm
Aspect ratio 5.5

Airfoil NACA 0018
Mass 0.321 kg

The Nastran FE model, as illustrated in Figure 5, is provided by Technion and is
publicly available for participants of the AePW3. It is composed of beam elements (CBEAM)
modelling the leading edge, trailing edge and the tip rod, as well as shell elements (CTRIA3,
CQUAD4) used to model the main spar and the Oralight skin. The ribs consist of a
combination of beam and shell elements. Unfortunately, the shell elements do not account
for the prestressing of the skin, which causes buckling and convergence issues in nonlinear
structural analyses even at very low loadings. Therefore, the simulations in this work are
performed for a modified model, where the shell elements representing the skin have been
removed. Regarding the coupling interface between the FE and the VL grid described
in Section 2.1, a set of structural nodes must be defined for the transfer of forces and the
interpolation of deformations. In this particular case, the 952 nodes selected include the
nodes of the outer ribs, the leading and the trailing edge. These coupling nodes and the VL
grid are depicted in Figure 6 and show a good match, which is important for a correct data
exchange between both models.



Aerospace 2021, 8, 308 17 of 29

Figure 5. Nastran FE model of the Pazy wing composed by beam and shell elements representing
the main aluminum spar and the 3D printed chassis; model without Oralight skin.

Figure 6. VL grid, coupling nodes of the FE model selected for the transfer of forces/displacements
and 33 equidistant points used for the evaluation of deflections.
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3. Numerical Simulations and Results
3.1. Static Coupling Simulations

Static coupling simulations are performed for velocities of 30, 40 and 50 m/s and angles
of attack ranging from 1 to 10 degrees. Although the wind tunnel tests are also performed
with lower flow velocities, these conditions have been chosen to consider the effects of
geometric nonlinearities. The density is set to 1.225 kg/m3 at mean sea level. For the steady
VL solution, the wing is discretised with 16 chordwise and 32 spanwise equidistant panels.
Although the wing is fixed vertically in the wind tunnel test, the direction of gravity is
assumed along the negative z direction. This is the case since the simulation setup is mainly
based on the setup of the Imperial College group [29], another member of the LDWG,
in order to achieve the best possible comparability. The most important parameters are
shown in Table 2.

Table 2. Parameters of the static coupling simulation setup.

Angle of attack 1–10◦

Free stream velocity 30, 40, 50 m/s
Density 1.225 kg/m3

Chordwise panels 16
Spanwise panels 32

Wake length 2000 m
Gravity on (z direction)

The results of the structural deformations at 30 m/s onflow velocity are shown in
Figure 7, where the normalised out-of-plane deflection ∆z with respect to the wing span
is plotted over the normalised spanwise coordinate y/b. For simplification of further
comparisons, the deformations are evaluated at 33 equidistant points in the spanwise
direction, which are located at 44.75% chord (see Figure 6). This location was chosen
as the results from Imperial College were obtained from SHARPy (Simulation of High-
Aspect Ratio aeroplanes in Python [30]), which uses a nonlinear, geometrically exact beam
formulation, where the beams’ elastic axis in the Pazy wing structural model is placed at this
exact position. For an angle of attack of 1 degree, the wing exhibits negative deformation
due to the gravity forces outweighing the aerodynamic lifting loads. From 2 degrees of
angle of attack on, the deformations become positive and—as expected—increase with
each increment in angle of attack. The maximum wing tip displacement in the z direction
of approximately 17% is obviously achieved at 10 degrees angle of attack. The influence
of geometric nonlinearities can be roughly estimated from the tip displacement in the
spanwise (y) direction. In this case, the influences seem to be rather small, as the maximum
spanwise displacement is approximately 2% with respect to the span of the wing. It can also
be seen that the curvature due to bending mainly occurs between the clamping and about
40% span, while the remaining part of the outer wing shows only minor local out-of-plane
bending deformations.

The results for five angles of attack at the highest onflow velocity of 50 m/s are
depicted in Figure 8. With a maximum tip displacement of approximately 47% in the
z direction and 14% in the y direction, the deformations obviously are in a nonlinear
regime, and it becomes apparent that the application of a geometrically nonlinear solution
method is indispensable here. While a geometrically linear solution at velocities below
30 m/s might only lead to small deviations, in this case it would clearly lead to an arbitrary
extension of the wing’s span and in turn to an increase of the wing area by more than 14%.
This would finally result in a significantly different lift distribution and deformation of the
wing. Furthermore, it can be seen that the deflections obtained from SHARPy provided by
Imperial College appear to be smaller with an almost constant deviation of 1.2% normalised
deflection in the z direction between 4 and 8 degrees angle of attack. One reason for these
differences can be the different positions of the elastic axis in both models. While the axis of
the beam model remains constant at 44.75% chord, the axis of the full 3D FE model changes
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slightly with respect to the spanwise coordinate, thus leading to a different distribution
in the torsional moment. However, the main reason for the deviations is still found in
the different structural solution methods, where, for example, a change of camber of the
wing due to the natural coupling of out-of-plane and in-plane bending deformations is
not accounted for in a beam model. Previous validations of the static coupling solver
with results from a nonlinear, strain-based beam solver for a similar test case (up to 35%
displacement with respect to semi-span) have shown comparable deviations in terms of
out-of-plane displacements (see [6]).

normalised span y/b

n
o

rm
a

lis
e

d
 d

e
fl
e

c
ti
o

n
 z

/b
, 
%

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

AoA = 1°

AoA = 10°

V
0
 = 30 m/s

Figure 7. Results of static coupling simulations for 30 m/s onflow velocity evaluated at 44.75% chord.
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Figure 8. Comparison of static coupling results with data provided by Imperial College (SHARPy)
for 50 m/s onflow velocity evaluated at 44.75% chord.

In addition to the results from Imperial College, the static coupling simulation results
are also compared to the few experimental data available from Technion for the Pre-Pazy
wing, as shown in Table 3. In this case, the simulation setup (cf. Table 2) is modified in terms
of the direction of gravity, since the wing is fixed vertically in the windtunnel (i.e., gravity
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in neg. y direction). It should also be noted that the simulations are carried out using the FE
model without skin due to the convergence issues mentioned in Section 2.4. As can be seen,
this circumstance leads to an overestimation of the tip displacement obtained from the
simulation with deviations of approximately 15% between simulation and experiment for
the 5 degree AoA cases. This can clearly be related to the stiffness of the skin, which is not
accounted for in the FE model, resulting in a less rigid wing. Interestingly, the differences
are reduced to 5% for the test case with large deformations.

Table 3. Comparison of computational and experimental results for wing tip deformation at static aeroelastic equilibrium
(data from [28]).

AoA Velocity Tip Displacement Experiment (Skin) Tip Displacement Simulation (No Skin) ∆

5◦ 30 m/s 52 mm 60 mm 15.3%
5◦ 50 m/s 157 mm 182 mm 15.9%
7◦ 55 m/s 255 mm 267 mm 4.7%

3.2. Influence of Geometric Nonlinearities on Modal Properties

In the previous section, it has been shown that structural deformation is a key pa-
rameter for the Pazy wing test case. The consideration of large structural deformations
also leads to a change in structural properties, i.e., the stiffness expressed by the updated
(tangent) stiffness matrix. With regard to the large static deflections at high angles of attack
and high onflow velocities, it can be expected that the modal properties (eigenvalues,
eigenvectors) will change significantly. In order to evaluate these changes, the eigenvalues
or eigenfrequencies, respectively, are analysed as a function of the deformation. For this
purpose, the extended static coupling solver as implemented for the stability analysis is
used, with data being obtained from a Nastran SOL400 modal analysis performed after
convergence of the static coupling solution. Here and in the following, only modes in
a meaningful frequency range of up to 150 Hz are taken into account. Thus, the first
out-of-plane bending (1st OOP), the second out-of-plane bending (2nd OOP), the first
torsion (1st Torsion), the third out-of-plane bending (3rd OOP), the first in-plane bending
mode (1st IP) and two other modes are considered. The latter are the second torsion (2nd
Torsion) with contributions from the 3rd OOP bending mode and vice versa.

The development of the eigenfrequencies as a function of the normalised tip displace-
ment is plotted in Figure 9 for two different angles of attack and velocities ranging from 10
to 90 m/s. Here, the frequencies of the 1st OOP and the 2nd OOP bending mode remain
almost constant, indicating that these modes are comparatively insensitive to the elastic
structural deflection. On the other hand, significant changes are observed in the frequency
of the 1st Torsion, which begins to decrease considerably at 10% tip displacement and
reaches the same value as the 2nd OOP bending mode at approximately 31% tip displace-
ment and 50 m/s onflow velocity. At higher velocities, the frequency keeps decreasing
and approaches the frequency of the 1st OOP bending mode. A similar behaviour is
shown for the 1st IP bending mode, where a major frequency drop is already observed
at small tip displacements but stabilises above 30% deformation. The frequencies of the
two highest modes are increasing at small deformations, while they seem to be minorly
affected at larger displacements. Concerning the mode shapes, it has to be noted that the
1st IP bending mode shows contributions of the 1st Torsion and vice versa as soon as small
elastic deformations occur. This might be a reason for the frequency drop of the 1st IP
mode even at small displacements. However, the behaviour of the 1st Torsion frequency
seems to be primarily affected by geometric nonlinearities, since changes occur mainly
in a nonlinear regime above 10% tip displacement. Although no unsteady aerodynamic
forces have been considered yet, it can be assumed that coupling of the 1st Torsion and
the 2nd OOP bending mode will lead to aeroelastic instabilities. As no differences are
observed between 3- and 5-degree angle of attack, it can be concluded that the eigenvalues
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are not affected by different lift distributions (for same total lift), but only depend on the
tip displacement.
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Figure 9. Evolution of the eigenfrequencies of the Pazy wing as function of the deformation for two
different angles of attack.

3.3. Stability Analysis Results

Following the investigation of the modal properties as a function of the elastic de-
formation, the aeroelastic stability of the Pazy wing is analysed by means of the method
presented in Section 2.3. The resulting complex eigenvalues are filtered to extract the
relevant eigenvalues of the structural states, i.e., the generalised coordinates q1,i. In gen-
eral, the entire solution sequence, including the static coupling solution, is performed for
increasing velocities at constant angles of attack. For the stability analysis results presented
in this paper, the wake length was set to four times the wing half span and discretised
so that the chord of the bound panels equals the chord of the wake panels. With seven
modes considered and a discretisation of 16 chordwise and 32 spanwise bound panels
for the wing, the system comprises 11,292 states. Once the simulations for the velocity
sweep of a specific angle of attack have been completed, there are various ways to illustrate
the eigenvalues and the aeroelastic stability of the wing. In the following, both root locus
and V-g and V-ω plots are used to depict the behaviour of the wing as a function of the
onflow velocity.

The root loci of the Pazy wing for angles of attack ranging from 0 to 5 degrees are
depicted in Figure 10. In this case, the evolution of the 1st OOP and 2nd OOP bending mode
and the 1st Torsion mode are presented, as only these modes show changes relevant to the
stability. The velocity was varied from 10 to 120 m/s for the 0-degree AoA case and from 10
to 90 m/s for all other cases, due to partial convergence issues of the static coupling solver
at very large deflections of the wing. An increasing flow velocity corresponds to a higher
contrast of the dots, where the step size is set to 2 m/s. It can be seen that the frequency and
damping of all three modes considered change significantly when the velocity is increased.
Positive real parts, which indicate an instability of the aeroelastic system, are observed
in the 1st Torsion and the 2nd OOP bending mode for all AoAs. Comparing the root loci
for increasing angles of attack, significant changes in the evolution of the eigenvalues are
observed. The instabilities in the 1st Torsion and the 2nd OOP bending mode seem to occur
at lower velocities. In contrast, no instabilities are detected in the 1st OOP bending mode,
which is mainly due to the smaller velocity range considered.
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Figure 10. Root loci of the Pazy wing for AoAs ranging from 0 to 5 degrees and velocities from 10 to
120/90 m/s; increased contrast corresponds to higher flow velocity.

A more detailed insight into the flutter mechanisms involved is provided by the V-g
and V-ω plots. Here, the damping ratio and the frequency of each mode considered are
presented with respect to the onflow velocity. For simplification, in the following, the trends
of the different modes are identified by the dominant structural mode at low velocities.
The plots for the undeformed wing at 0-degree angle of attack and 10 to 120 m/s onflow
velocity are shown in Figure 11. In this case, the critical flutter mode is obviously the 1st
Torsion mode, which becomes unstable at approximately 68 m/s due to coupling of the
1st Torsion and the 2nd OOP bending mode. As the 1st Torsion mode becomes stable
again at 98 m/s, it is referred to as a so-called hump mode [31]. Due to the soft flutter of
the 1st Torsion mode with comparatively small positive damping values, this instability
might result in a limit cycle oscillation (LCO). An investigation of LCOs by extension of the
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developed state-space model should therefore be considered for future research. The 2nd
OOP bending mode shows instability already at 94 m/s, although its frequency diverges
from the frequency of the 1st Torsion mode. This is followed by the flutter onset of the 1st
OOP bending mode at 98 m/s. Interestingly, the frequency of this mode reaches a value of
0 Hz at 78 m/s and remains constant, representing a non-oscillatory eigenvalue and thus a
steady divergent mode. Since the linearised model only considers the steady induced drag
forces at static aeroelastic equilibrium, the 1st IP bending mode exhibits damping values
close to zero for the undeformed case.
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Figure 11. Damping and frequency trends of the Pazy wing for 0 degrees angle of attack and velocities
ranging from 10 to 120 m/s.

In contrast, the frequency and damping trends change significantly when the stability
analysis is performed for increasing AoAs, e.g., for 5 degrees angle of attack depicted in
Figure 12. The flutter onset of the 1st Torsion mode is reduced to approximately 44 m/s, and
the mode turns stable again at 48.7 m/s. In comparison to the undeformed case, the velocity
range for the instability of this hump mode is also reduced from 30 m/s (0◦ AoA) to 4.7 m/s.
A decrease in flutter velocity is also observed for the 2nd OOP bending mode, which shows
instability above 74 m/s. An interesting behaviour is shown by the seventh mode, that
incorporates 3rd OOP bending and 2nd Torsion. This mode is only minimally damped
at velocities above 30 m/s, which might be caused by the torsional motion included in
the pure structural mode shape. Besides the flutter velocities, the complex flutter mode
shapes also change as the structure deforms. This can be seen in Figure 13, where the
contributions of the pure structural modes to the complex aeroelastic modes—obtained
from the eigenvectors of the corresponding eigenvalues and normalised to unit value—
are plotted for the undeformed (AoA = 0◦) and the deformed case (AoA = 5◦). For both
unstable modes, the contribution of the 1st Torsion at flutter onset increases between 0 and
5 degrees angle of attack. Instead, the magnitude of 1st OOP bending (first flutter onset)
and 2nd OOP bending (second flutter onset), respectively, is decreasing.
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Figure 12. Damping and frequency trends of the Pazy wing for 5 degrees angle of attack and velocities
ranging from 10 to 90 m/s.
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Figure 13. Contributions of the structural DOFs to the unstable complex mode shapes of the Pazy wing for 0 and 5 degrees
angle of attack and velocities ranging from 10 to 120/90 m/s; vertical line marks flutter onset.

In general, the decrease in the flutter velocities can be clearly related to the change of
the structural eigenvalues due to the deflection of the wing (cf. Section 3.2). The effect of
these structural nonlinearities becomes more apparent in Figure 14, in which the flutter
velocity is plotted as a function of the normalised tip displacement for six different angles
of attack. As already expected and observed in the damping trends, an increase in angle of
attack results in a significant reduction in the flutter velocity of both critical flutter modes.
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The diagram also illustrates that the region of instability of the hump mode becomes
smaller with increasing angle of attack. In addition, the velocity range between the first
and the second flutter mode is considerably increasing. The phenomenon of a restricting
maximum tip deflection at high angles of attack appears in the ’stabilisation’ velocity of
the hump mode, which is limited to approximately 30%. This is clearly a consequence
of the change of modal properties (only due to the deflection of the wing) discussed in
the previous section as the frequency of the structural 1st Torsion mode approaches the
frequency of the 2nd OOP bending mode at approximately 31% (see Figure 9).
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Figure 14. Regions and boundaries of flutter instabilities of the Pazy wing for AoAs ranging from 0
to 5 degrees.

Similar to the results of the static coupling simulations, the results of the stability
analysis are also compared to numerical data obtained from SHARPy at Imperial College.
Considering the undeformed case, high deviations in the velocity of the first flutter onset
are observed, while the velocity of the second flutter onset shows a good match. As the
results of the stability analysis for the undeformed wing were validated with results ob-
tained by Nastran SOL145 (see [25]) using the same full FE model, a possible explanation
for the deviations could be the different solution approaches (beam vs. full FE model).
With increasing angle of attack, the results become additionally influenced by the differ-
ences in the static coupling results, as indicated by the deviations of the flutter points in the
x axis (normalised tip displacement). Overall, the development of the flutter velocities as a
function of the tip displacement shows qualitatively similar behaviour for both solutions.
Interestingly, the effect of the steady aerodynamic loads seems to affect the stability of the
system only at higher velocities. While only small differences are observed for the first
flutter onset and offset, the velocity for the second flutter mode is slightly underestimated
when the steady forces at aeroelastic equilibrium are not considered in the stability analysis
(Γw0 = 0).

4. Conclusions

This paper presented static coupling and stability analysis results for the Pazy wing
aeroelastic benchmark investigated by the Large Deflection Working Group within the
Third Aeroelastic Prediction Workshop. An aeroelastic solver developed at DLR was
used for the numerical simulations, coupling a geometrically nonlinear vortex lattice
method with the finite element solver Nastran. Follower forces as well as geometric
nonlinearities were considered by a fully nonlinear formulation of the aerodynamic solution
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(deformed aerodynamic grid, update of panel normals, etc.) and by using the nonlinear
solution sequence SOL400 in Nastran for the structural solution. For the stability analysis,
the aeroelastic system was linearised at static equilibrium points with large deformations.
A linear aerodynamic model was derived analytically at first by transforming the existing
unsteady vortex lattice implementation into a linear discrete-time state-space system, using
the circulation of the wake panels as system states. From a structural point of view, a modal
approach in generalised coordinates was used and likewise converted into a linear discrete-
time state-space model. Both models were integrated into a monolithic aeroelastic state-
space model, which accounts for the deformed aerodynamic grid, the steady aerodynamic
loads at aeroelastic equilibrium and the changed natural modes (pre-loaded structural
eigenvalue analysis) due to the deflection of the structure. The aeroelastic stability is
determined by solving the homogeneous eigenvalue problem for the dynamics matrix of
the system.

The results of static coupling simulations were presented for a range of different AoAs
and velocities, reaching a maximum of 47% tip displacement for the highest AoA and
onflow velocity. Comparatively small deviations were observed when the results were
compared to data obtained by another member of the LDWG. Regarding the influence
of the geometric nonlinearities on the structural properties, significant changes appeared
mainly in the frequencies and the eigenvectors of two structural modes. These changes of
the modal properties were found to have a major influence on the aeroelastic stability, as the
flutter onset velocities of the first two instabilities are clearly reduced with increasing angle
of attack. Comparison of the stability analysis results with data obtained from a similar
solution method using an equivalent beam model revealed larger differences, especially
for the velocity of the first flutter onset.

The goal of validating the simulation results with experimental data has not yet been
achieved but will therefore have high priority in the future. In addition, it seems reasonable
to investigate how the skin and its prestressing could actually be included in the structural
model, since all simulations presented in this work were performed using the model
without skin. Another aspect for future research should be an extension of the proposed
state-space formulation in order to investigate limit cycle oscillations which occurred
at large deformations during the wind tunnel tests. As the solution of the eigenvalue
problem becomes computationally demanding due to the large number of aerodynamic
states, the application of model order reduction methods (e.g., balanced truncation) to the
linearised aerodynamic model seems favourable in order to save computational costs and
to speed up the stability analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms
AePW3 Third Aeroelastic Prediction Workshop
CFD Computational Fluid Dynamics
DLR German Aerospace Center
DOF Degree of Freedom
FE Finite Element
FSI Fluid Structure Interaction
IP In-plane
LCO Limit Cycle Oscillation
LDWG Large Deflection Working Group
OOP Out-of-plane
SHARPy Simulation of High-Aspect Ratio aeroplanes in Python
VLM Vortex Lattice Method
Nomenclature
Ap Area of aerodynamic panel
b Wing span
z Eigenvalue of discrete-time state-space system
∆t Time step size
λ Eigenvalue of continuous-time state-space system
ρ Fluid density
ω Natural frequency
φ Velocity potential
A Dynamics matrix
AIC Aerodynamic influence coefficients matrix
B Control/Input matrix
C Sensor/Output matrix
D Direct term/Feed-through matrix
F Force vector of aerodynamic panel
f Generalised forces vector
H Coupling matrix
I Identity matrix
M Shifting matrix for wake-shedding process; Interpolation matrix
n Normal vector of aerodynamic panel
q Vector of generalised coordinates
r Quarter chord line vector of aerodynamic panel

RHS
Vector of kinematic boundary conditions at collocation points of
aerodynamic panels

u Input vector
V Velocity vector of aerodynamic panel
W IC Wake influence coefficients matrix
x State vector
y Output vector
Γ Vector of circulations of aerodynamic panels
Φ Eigenvectors of structural modes
Indices
A aerodynamic
b bound
c w.r.t. collocation point
d displacement transfer; induced drag component
e f f effective
el elastic
f force transfer
n discrete time step
q w.r.t. quarter point
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rb rigid body
s steady component
S structural
u unsteady component
w wake
0 conditions at static aeroelastic equilibrium
˜ equivalent matrix of a vector in blockwise diagonal form
˙ first time derivative

References
1. Ritter, M.; Dillinger, J.; Meddaikar, Y.M. Static and dynamic aeroelastic validation of a flexible forward swept composite wing. In

Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX,
USA, 9–13 January 2017.

2. Avin, O.; Drachinsky, A.; Ben-Shmuel, Y.; Raveh, D. Design of an experimental benchmark of a highly flexible wing. In
Proceedings of the 60th Israel Annual Conference on Aerospace Sciences, Tel Aviv/Haifa, Israel, 4–5 March 2020.

3. Zimmer, M. Integral design and optimisation process for a highly flexible generic long range jet transport with flight mechanic
derivative constraints. In Proceedings of the AIAA Scitech 2021 Forum, Reston, VA, USA, 11–21 January 2021.

4. Ritter, M.; Hilger, J.; Zimmer, M. Static and dynamic simulations of the Pazy wing aeroelastic benchmark by nonlinear potential
aerodynamics and detailed FE model. In Proceedings of the AIAA Scitech 2021 Forum, Reston, VA, USA, 11–21 January 2021.

5. Cesnik, C.E.; Senatore, P.J.; Su, W.; Atkins, E.M.; Shearer, C.M. X-HALE: A Very Flexible Unmanned Aerial Vehicle for Nonlinear
Aeroelastic Tests. AIAA J. 2012, 50, 2820–2833. [CrossRef]

6. Ritter, M. An Extended Modal Approach for Nonlinear Aeroelastic Simulations of Highly Flexible Aircraft Structures. Ph.D.
Thesis, TU Berlin, Berlin, Germany, 2018.

7. Noll, T.E.; Brown, J.M.; Perez-Davis, M.E.; Ishmael, S.D.; Tiffany, G.C.; Gaier, M. Investigation of the Helios Prototype Aircraft Mishap:
Volume I Mishap Report; NASA Langley Research Center: Hampton, VA, USA, 2001.

8. Cea, A.; Palacios, R. Nonlinear modal aeroelastic analysis from large industrial-scale models. In Proceedings of the AIAA Scitech
2019 Forum, San Diego, CA, USA, 7–11 January 2019.

9. Ritter, M.; Cesnik, C.E.; Krüger, W.R. An enhanced modal approach for large deformation modeling of wing-like structures. In
Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL,
USA, 5–9 January 2015.

10. Tang, D.; Dowell, E.H. Experimental and Theoretical Study on Aeroelastic Response of High-Aspect-Ratio Wings. AIAA J. 2001,
39, 1430–1441. [CrossRef]

11. Xie, C.; Liu, Y.; Yang, C.; Cooper, J.E. Geometrically Nonlinear Aeroelastic Stability Analysis and Wind Tunnel Test Validation of a
Very Flexible Wing. Shock Vib. 2016, 2016, 5090719. [CrossRef]

12. AePW-3 Overview. Available online: https://nescacademy.nasa.gov/workshops/AePW3/public/ (accessed on 20 July 2021).
13. Ritter, M.; Neumann, J.; Krüger, W.R. Aeroelastic Simulations of High Reynolds Number Aero Structural Dynamics Wind Tunnel

Model. AIAA J. 2016, 54, 1962–1973. [CrossRef]
14. Ritter, M.; Jones, J.; Cesnik, C.E. Free-flight Nonlinear Aeroelastic Simulations of the X-HALE UAV by an Extended Modal

Approach. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Como, Italy, 25–28 June 2017.
15. Palacios, R.; Murua, J.; Cook, R. Structural and Aerodynamic Models in Nonlinear Flight Dynamics of Very Flexible Aircraft.

AIAA J. 2010, 48, 2648–2659. [CrossRef]
16. Palacios, R. Nonlinear normal modes in an intrinsic theory of anisotropic beams. J. Sound Vib. 2011, 8, 1772–1792. [CrossRef]
17. Shearer, C.M.; Cesnik, C.E. Nonlinear Flight Dynamics of Very Flexible Aircraft. J. Aircr. 2007, 44, 1528–1545. [CrossRef]
18. Jones, J.; Cesnik, C.E. Nonlinear Aeroelastic Analysis of the X-56 Multi-Utility Aeroelastic Demonstrator. In Proceedings of the

AIAA Scitech Forum, 15th Dynamics Specialists Conference, San Diego, CA, USA, 4–8 January 2016.
19. Bathe, K.J. Finite Element Procedures, 2nd ed.; Klaus-Jürgen Bathe: Watertown, MA, USA, 2008.
20. MSC Software. MSC Nastran 2017: Nonlinear User’s Guide SOL 400; MacNeal-Schwendler Corporation: Newport Beach, CA,

USA, 2016.
21. Murua, J.; Palacios, R.; Graham, J.M.R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight

dynamics. Prog. Aerosp. Sci. 2012, 55, 46–72. [CrossRef]
22. Katz, J.; Plotkin, A. Low Speed Aerodynamics, 2nd ed.; Cambridge Aerospace Series; Cambridge University Press: Cambridge, UK,

2001; Volume 13.
23. Mauermann, T. Flexible Aircraft Modelling for Flight Loads Analysis of Wake Vortex Encounters. Ph.D. Thesis, TU Braunschweig,

Braunschweig, Germany, 2010.
24. Beckert, A.; Wendland, H. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp.

Sci. Technol. 2001, 5, 125–134. [CrossRef]
25. Hilger, J. Nonlinear Aeroelastic Simulations and Stability Analysis of a Highly Flexible Wing. Master’s Thesis, Hamburg

University of Applied Sciences, Hamburg, Germany, 2021.

http://doi.org/10.2514/1.J051392
http://dx.doi.org/10.2514/2.1484
http://dx.doi.org/10.1155/2016/5090719
https://nescacademy.nasa.gov/workshops/AePW3/public/
http://dx.doi.org/10.2514/1.J053384
http://dx.doi.org/10.2514/1.J050513
http://dx.doi.org/10.1016/j.jsv.2010.10.023
http://dx.doi.org/10.2514/1.27606
http://dx.doi.org/10.1016/j.paerosci.2012.06.001
http://dx.doi.org/10.1016/S1270-9638(00)01087-7


Aerospace 2021, 8, 308 29 of 29

26. Murua, J.; Martínez, P.; Climent, H.; van Zyl, L.; Palacios, R. T-tail flutter: Potential-flow modelling, experimental validation and
flight tests. Prog. Aerosp. Sci. 2014, 71, 54–184. [CrossRef]

27. Åström, K.J.; Murray, R.M. Feedback Systems: An Introduction for Scientists and Engineers; Princeton University Press: Princeton, NJ,
USA, 2008.

28. Avin, O.; Raveh, D.E.; Drachinsky, A.; Ben-Shmuel, Y. An experimental benchmark of a very flexible wing. In Proceedings of the
AIAA Scitech 2021 Forum, Reston, VA, USA, 11–21 January 2021.

29. Goizueta, N.; Drachinsky, A.; Wynn, A.; Raveh, D.E.; Palacios, R. Flutter predictions for very flexible wing wind tunnel test. In
Proceedings of the AIAA Scitech 2021 Forum, Reston, VA, USA, 11–21 January 2021.

30. del Carre, A.; Muñoz-Simón, A.; Goizueta, N.; Palacios, R. SHARPy: A dynamic aeroelastic simulation toolbox for very flexible
aircraft and wind turbines. J. Open Source Softw. 2019, 4, 1885. [CrossRef]

31. Norton, W.J. Structures Flight Test Handbook; Air Force Flight Test Center: Edwards Air Force Base, CA, USA, 1990.

http://dx.doi.org/10.1016/j.paerosci.2014.07.002
http://dx.doi.org/10.21105/joss.01885

	Introduction
	Simulation Framework and Modelling Approach
	Implementation of the Steady and Unsteady Vortex Lattice Method
	Linearisation of the Aeroelastic Model
	Derivation of the Linearised Aerodynamic Model
	Derivation of the Linearised Aeroelastic Model

	Aeroelastic Framework and Solution Sequence
	Structural and Aerodynamic Simulation Models

	Numerical Simulations and Results
	Static Coupling Simulations
	Influence of Geometric Nonlinearities on Modal Properties
	Stability Analysis Results

	Conclusions
	References

