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Abstract

Risk management is one of the key factors in the financial markets in general and derivative pricing industry
in specific. Estimation of risk in finance requires flexible models capable of giving the best fit to financial
data, especially high-frequency data, to prevent under-estimation or over-estimation of financial risk. The
aim of this research is to use a flexible Gaussian mixture in modeling high-frequency financial data. The
Expectation Maximization algorithm is used in estimating the parameters of the Gaussian mixture model.
The research uses high-frequency financial data from Chinese Soy Beans Futures which were captured at a
minute interval. The iterative process of the Expectation Maximization algorithm for a continuous probability
density is shown and hence, for a two-component Gaussian mixture. The generalization has been given for a
k-component mixture with probability wi where i is the i-th component. The flexible distributions have been
applied to the data each time with increasing component starting with two components. Selection criterion is
based on the BIC values which were found to ignore over-fitting. The BIC gradient were computed and used
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as selection criterion instead. We found that beyond five components, if we increase the number of
components, the BIC gradient scores remains almost constant. Therefore, there is no gain in the mixture
model by increasing the number of components. As a result, we conclude that the best model is the one with
four components. Future research is however required to come up with the best model under BIC criterion
with penalty for over-fitting as the model complexity increases.

Keywords: Mixture models; high-frequency; expectation maximization; minimum message length.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

The Expectation Maximization algorithm was first developed by, (Dempster et al., 1977) to estimate the
maximum likelihood estimates where we have missing data or unknown cluster assignment. It is an iterative
approach applicable in most scenarios where mixture models deal with incomplete data. In their papers,
Dempster and (Laird et al., 1987) defines the term ”incomplete data” as the existence of two sample spaces
X and Y and a many-one mapping from X to Y .

In (Sammaknejad et al., 2019), the Expectation Maximization (henceforth, EM Algorithm) has been applied
before in process identification using data-driven approach since the algorithm ensures convergence of the
likelihood function as a result of its monotonic property. Unknown time delay, sensor mulfunction and multiple
process operation conditions are some examples of missing observation sources in this paper. The EM Algorithm
helps in designing identification algorithms used in such identification processes.

The Gaussian model is one of the most used modeling distribution in statistical analysis. This model has been
used for a very long time by many authors because of its simple parameters used in population description
and other areas such as classroom performance, weights, and heights. The finite mixtures of Gaussian have
also gained popularity in the field of machine learning and artificial intelligence for clustering, data mining, and
image recognition purposes, (Viroli and McLachlan, 2019). The Gaussian mixture is well known limiting case
for any continuous distribution using its normal densities. We notice that (Chen, 1995) demonstrates that when
the number of components in a finite mixtures of Gaussian is known, the optimal rate of convergence is faster,
otherwise the rate is slower. When deciding the number of such components, we need to take a lot of care since
too many components tend to overfit the data while few tend to underfit the data, (Huang et al., 2017). What is
therefore more important is the selection of an optimal number of components of normal densities in a Gaussian
mixture in practical applications.

2 Literature Review

Financial modeling has been an area of interest to researchers in the financial field for a long time, with the
use of hyperbolic models gaining momentum in the field, (Oduor and Anyango, 2024). Estimating financial risk
metrics such as Value at Risk, expected shortfall, and many others, uses Gaussian assumption of the distribution
of asset returns. This under-estimates the market financial risk, (Zhang et al., 2020). (Zhang et al., 2020) uses
a mixture model with Gaussian and fat-tailed Cauchy distribution to address this limitation. They however
did not consider data with higher frequency. In (Huang et al., 2017), a proposed modified EM algorithm was
used to discard insignificant components, split any large components, and prevent the generation of any large
components in the Gaussian mixture model. This is to obtain an optimal number of components for a finite
Gaussian mixture.

(Tigani et al., 2019) built a model for clustering foreign exchange market volatility and used the Expectation
Maximization algorithm to provide inference. This model was however applied to hourly data of foreign exchange
market volatility for risky and safe hours to trade. With the new technological advances, the introduction of
complex systems has enabled easy and seamless collection and storage of financial market data at very short
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time intervals. This high frequency basis has enabled the development of powerful tools used in analysis of such
big data. These data include stock price, futures, exchange rates, interest rates, which can be collected at a
frequency as high as every second, minute, hour, or day, (Goodhart and O’Hara, 1997). Modeling this kind of
data has been the interest of researchers within the financial scope with aims of risk management and portfolio
allocation. (Cao et al., 2019), proposed the use of hybrid model that combined Long-Short Term Memory
(LSTM) and Complete Ensemble Empirical Mode with Adaptive Noise to improve accuracy for stock market
price forecasting. The model was later tested on global stock market indices and was reported to show good
performances. The data used in the paper was however daily stock price indices whose frequency was a little bit
lower.

The use of machine learning tehniques such as the Artificial Neural Networks and Random Forest have been
proposed by (Vijh et al., 2020) and Convolusional Neural Networks, Deep Beliefs Networks by (Sezer et al.,
2020) in modeling and forecasting of daily financial time series data have been evident in the literature. The
LSTM and ARIMA models have also been used in modeling and forecasting financial data recorded at daily
intervals, (Moghar and Hamiche, 2020), (Siami-Namini et al., 2018), and (Siami-Namini et al., 2019).

Even though the Gaussian Mixture models have been rampant in the field of machine learning, it has solely
been applied to fields such as clustering analysis, unsupervised anomaly detection as deep auto-encoding finite
mixture model (Zong et al., 2018), in topology as a sub-manifold of probability densities in optimal mass
transport network, (Chen et al., 2018). Other authors have used the GM in foreground video surveilence
through background subtraction, (Goyal and Singhai, 2018), emotion recognition using hybrid GM and deep
neural network, (Shahin et al., 2019) as well as outliers detection in seasonal univariate network traffic, (Reddy
et al., 2017).

The use of finite GM has therefore not been extensively applied to the fields of financial time series modeling
especially where data is in high frequency, say ”minutely” with missing information, incomplete information.
It is in the interest of this paper that a mixture of Gaussian components can very well capture the peaks of
high-frequency data in the financial stock market. This study intends to bridge the gap in the scientific literature
by extensively exploring the capabilities of the finite Gaussian mixtures in high-frequency financial data using
the EM Algorithm approach. This concept will therefore be used in risk management as it explores the behavior
of the derivative markets.

3 Research Methodology

3.1 The E-M Algorithm

This is a two-step iterative proccess that aims at maximizing the log-likelihood function during parameter
estimation. The steps are; Expectation (E-step) and the Maximization (M-step) (as in (Dempster et al., 1977)).
In the E-step we choose a parameter ϕ that maximizes the likelihood but this is hard because we have missing
data. To find ϕ that maximizes the likelihood:

� We will try to fill in the missing data.

� Then we find ϕ that maximizes the likelihood.

� Repeat this process until we are happy with our answer.

Let X be observed data and ϕ the parameter we wish to estimate. The likelihood is obtained as follows:

L(ϕ) = log f(x|ϕ) (1)

where f(x—ϕ) is the probability density function of X given ϕ.
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The problem is to maximize the log-likelihood log f(x—ϕ). But as we earlier noted, this is difficult but we can
consider the completed data and the current estimates of the parameters. Let us consider this as follows:

L(ϕ) = log f(x|ϕ) =
∫
c

f(x, c|ϕ)dc (2)

where f(x, c|ϕ) is a joint distribution, C is complete data which contains both the original data X and the
missing data. Integrating out c we have:

L(ϕ) = log

∫
c

f(c|ϕ)dc (3)

this is because C contains X, we therefore ignore X.
Now let ϕ̂(t) be the estimate of the parameter ϕ at time t. We can rewrite equation 3 as follows:

L(ϕ) = log

∫
c

f(c|ϕ)
f(c|x, ϕ̂(t))

f(c|x, ϕ̂(t))dc (4)

We note that the two equations are the same, except for a modification of equation 3 by introducing a constant,

f(c|x, ϕ̂(t))

f(c|x, ϕ̂(t))
= 1

which does not change it’s meaning. The equation 4 is a log of expectation because we have a quantity,

f(c|ϕ)
f(c|x, ϕ̂(t))

and a probability,
f(c|x, ϕ̂(t))dc

Integrating this over all c gives an expectation as follows,

L(ϕ) = logEc|x,ϕ̂(t)

[
f(c|ϕ)

f(c|x, ϕ̂(t))

]
At this point, we have the log of expectation of some function. We therefore apply the Jensen’s inequality to
obtain the lower bound of the likelihood function.

3.2 Jensen’s Inequality

For a concave probability function f,
f(E(x)) ≥ E(f(x))

see (Liao and Berg, 2019) for details.

We can therefore apply this approach to our problem above. Since our log is concave;

L(ϕ) = logEc|x,ϕ̂(t)

[
f(c|ϕ)

f(c|x, ϕ̂(t))

]

≥ Ec|x,ϕ̂(t)

[
log

f(c|ϕ)
f(c|x, ϕ̂(t))

]
(5)

Equation 5, which is an expectation of log, is our lower bound for L(ϕ)

By properties of logarithm, we can rewrite,

log
f(c|ϕ)

f(c|x, ϕ̂(t))
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as,

log f(c|ϕ)− log f(c|x, ϕ̂(t))

We can then rearrange 5 as follows;

Ec|x,ϕ̂(t) [log f(c|ϕ)] + Ec|x,ϕ̂(t) [− log f(c|x, ϕ̂(t))] ∀ ϕ (6)

This equation can be simplified in two parts as follows;

G(ϕ|ϕ̂(t)) + I(c, x, ϕ̂(t)) (7)

where the G function is called the objective function while the I function is the differential entropy. Since the
I function is not a function of ϕ, it will not be used as part of the log-likelihood equation. The lower bound of
the log-likelihood can therefore be written as;

L(ϕ) ≥ G(ϕ|ϕ̂(t)) + I(c, x, ϕ̂(t)) (8)

In the M-step, we work to improve the G function which will improve the L(ϕ). The objective of E-M algorithm
is to improve the L(ϕ), but this cannot be done directly since we have missing data. If we consider a point on the
curve where ϕ = ϕ̂(t), this expectation becomes a constant and the inequality becomes an equality. Therefore,
at ϕ = ϕ̂(t),

L(ϕ) = G(ϕ̂(t)|ϕ̂(t)) + I(c, x, ϕ̂(t)) (9)

By subtracting equation 9 from 8, we can sufficiently say that,

L(ϕ)− L(ϕ̂(t)) ≥ G(ϕ|ϕ̂(t))−G(ϕ̂(t)|ϕ̂(t)) (10)

We choose ϕ that maximizes the objective function G(ϕ̂(t)|ϕ̂(t)) and therefore equation 10 only holds because
G(ϕ|ϕ̂(t))−G(ϕ̂(t)|ϕ̂(t)) ≥ 0 and therefore L(ϕ)− L(ϕ̂(t)) ≥ 0 We maximize the G function as follows;

Let ϕ̂(t+1) be the estimate of ϕ that maximizes the G function.

ϕ̂(t+1) = argmax
ϕ

G(ϕ|ϕ̂(t)) (11)

By this definition,

G(ϕ̂(t+1)|ϕ̂(t)) ≥ G(ϕ̂(t)|ϕ̂(t))

and therefore,

L(ϕ̂(t+1)) ≥ L(ϕ̂(t)). This implies that the likelihood function will keep increasing as the iteration process
continues.

In summary, the general procedure of the E-M algorithm is as follows:

� We pick an initial parameter value ϕ0 based on prior knowledge of what it might be.

� Through iteration, we improve the estimate of ϕ through two steps. The Expectation step computes the
objective function G and the maximization step re-estimates ϕ by maximizing the objective function G.

� The two steps are repeated over and over again until the likelihood L(ϕ) converges(until there is no more
change in the value of the parameter estimate).

� Stopping criterion. If we arrive at a new parameter whose value is smaller than a threshold specified in
advance, ϵ,
| ϕ̂(t+1) − ϕ̂(t) |< ϵ,

stop the algorithm, else, return to step 1.
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3.3 The E-M Algorithm for k-component Gaussian Mixtures

Let X = x1, ..., xn be the observed iid normally distributed random variables. The k-weighted normal mixtures
is of the form;

f(xi;ϕ) = w1Φ(xi;µ1, σ
2
1) + w2Φ(xi;µ2, σ

2
2) + ...+ wkΦ(xi;µk, σ

2
k) (12)

where wj are the weights of the components in the mixture and ϕ = (wj , µ1, σ
2
1µ2, σ

2
2 , ..., µk, σ

2
k) are the

parameters of the k components Gaussian mixture. For simplicity, let us observe k = 2 component Gaussian
mixture. We therefore have the following likelihood;

L(ϕ;x) =

n∏
i=1

[
wΦ(xi;µ1, σ

2
1) + (1− w)Φ(xi;µ2, σ

2
2)
]

We can formulate the log-likelihood as follows;

logL(ϕ;x) =

n∑
i=1

log[wΦ(xi;µ1, σ
2
1) + (1− w)Φ(xi;µ2, σ

2
2)]

Since we have an addition sign inside the logarithm bracket, computing this log-likelihood directly from here
might be difficult. We also note that we have no information from which component did each observed data
come from. If we did, we would simply fit normal distributions to each group.

Let us define the complete dataset where X = x1, ..., xn and Z = z1, ..., zn are observed and latent variables
respectively such that;

Zi = 1 if xi belongs to the first component and Zi = 0 if xi = 1 belongs to the second component. The likelihood
of the complete data is;

L(ϕ|x, z) =
n∏

i=1

[wΦ(xi;µ1, σ
2
1)]

Zi [(1− w)Φ(xi;µ2, σ
2
2)]

1−Zi

The log-likelihood therefore is;

logL(ϕ|x, z) =
n∑

i=1

Zi

[
logw + logΦ(xi;µ1, σ

2
1)
]
+

n∑
i=1

1− Zi

[
log(1− w) + logΦ(xi;µ2, σ

2
2)
]

(13)

This equation (13) is the G function, G(ϕ|ϕ̂t).

3.3.1 The Expectation Step

In this step, we work to find the expected value with respect to the latent variables. This is done as follows;

G(ϕ|ϕt) = Ez

[
logL(ϕ|x, z)|xi, ϕ

t]
substituting with the log-likelihood equation we have;

G(ϕ|ϕt) = Ez

[
n∑

i=1

Zi

[
logw + logΦ(xi;µ1, σ

2
1)
]
+

n∑
i=1

1− Zi

[
log(1− w) + logΦ(xi;µ2, σ

2
2)
]
|x, ϕt

]
We are taking the expected values of z and therefore, the following are constants;

[
logw + logΦ(xi;µ1, σ

2
1)
]
and

[
log(1 − w) + log Φ(xi;µ2, σ

2
2)
]
|x, ϕt

]
, therefore their expected values remain

constant.

G(ϕ|ϕt) =
n∑

i=1

E[Zi|x, ϕt]
[
logw + logΦ(xi;µ1, σ

2
1)
]

+

n∑
i=1

1− E[Zi|x, ϕt]
[
log(1− w) + logΦ(xi;µ2, σ

2
2)
]
|x, ϕt]
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To complete this step, we have to compute the expectation for i = 1, ..., n,

E[Zi|x, ϕt] = 1.P r[Zi = 1|x, ϕt] + 0.P r[Zi = o|x, ϕt]

This gives,
Pr[Zi = 1|x, ϕt]

which can also be written as,

E[Zi|x, ϕt] =
f(xi|Zi = 1, ϕt)Pr(Zi = 1|ϕt)

f(xi|ϕt)

Therefore we have,

E[Zi|x, ϕt] =
Φ(xi|µ1

t, σt
1
2
) ∗ wi

(t)

wi
(t)Φ(xi|µ1

t, σt
1
2) + (1− wi

(t))Φ(xi|µ2
t, σt

2
2)

which can simply be put as;

E[Zi|x, ϕt] = ˆwi
(t)

for i = 1, ..., n Therefore, by substitution, the objective function becomes,

G(ϕ|ϕt) =

n∑
i=1

ˆwi
(t)

[
logw + log

[ 1√
2πσ2

1

exp(− 1

2σ2
1

(xi − µ1)
2)
]]

+

n∑
i=1

(1− ˆwi
(t))

[
log(1− w) + log

1√
2πσ2

2

exp(− 1

2σ2
2

(xi − µ2)
2)

]

By opening brackets and expanding, we can simplify this to;

G(ϕ|ϕt) =

n∑
i=1

ˆwi
(t)

[
logw − 1

2
log 2π − 1

2
log σ2

1 − 1

2σ2
1

(xi − µ1)
2

]

+

n∑
i=1

(1− ˆwi
(t))

[
log(1− w)− 1

2
log 2π − 1

2
σ2
2 − 1

2σ2
2

(xi − µ2)
2

]
(14)

This equation (14) is the expectation of the objective function G that we shall use to update the parameters in
the next step.

3.3.2 The Maximization Step

In this stage, we take the partial derivative of the objective function with respect to each of the four parameters.
We estimate the parameters by equating the partial derivatives to zero.

∂G

∂(w, µ1, σ2
1µ2, σ2

2)
= 0

with respect to each parameters, we have,

∂G

∂w
=

1

w

n∑
i=1

ˆwi
(t) − 1

1− w

n∑
1=1

(1− ˆwi
(t)) = 0

we can rewrite this as,

(1− w)

n∑
i=1

ˆwi
(t) − w

n∑
i=1

(1− ˆwi
(t)) = 0
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solving for w we have the following updating equation for the weight component.

w(t+1) =
1

n

n∑
i=1

ˆwi
(t)

The same procedure is carried out for the remaining parameters and their updating equations are as follows,

µ1
(t+1) =

∑n
i=1

ˆwi
(t)xi∑n

i=1
ˆwi
(t)

µ2
(t+1) =

∑n
i=1(1− ˆwi

(t)xi)∑n
i=1(1− ˆwi

(t))(
σ1

(t+1))2

=

∑n
i=1

ˆwi
(t)(xi − µ1

(t+1))∑n
i=1

ˆwi
(t)(

σ2

(t+1))2

=

∑n
i=1(1− ˆwi

(t))(xi − µ1
(t+1))∑n

i=1(1− ˆwi
(t))

where µ1
(t+1) and

(
σ1

(t+1))2

are the updated equations for the mean and the variance of the first component,

while µ2
(t+1) and

(
σ2

(t+1))2

are the updating equations for the mean and variance of the second component.

Therefore, the M-step is complete.

Using these updating equations, we go back to the E-step update the parameters, and proceed again to the
M-step. this process is called iteration and it continues until convergence. Since the log-likelihood increases on
each iteration, we keep rotating between the two steps until there is no more change in the likelihood. At this
point, we will have achieved the best parameter estimators.

For a four-component Gaussian mixture model, i.e, for k = 4, we have;

f(x) =

4∑
k=1

wkf(x;ϕk)

as long as
∑4

k=1 wk = 1.

Therefore;

f(x) =

4∑
k=1

wkΦ(x;µ1, σ
2
1 , µ2, σ

2
2 , µ3, σ

2
3 , µ4, σ

2
4)

From here, the E-M steps remain as above.

4 Data Analysis and Results

In this section, we use the weighted k component Gaussian Mixtures in modeling financial data occurring every
minute. The data used is obtained from the Soy Beans Futures from the Chinese financial market. Soy Beans
futures are financial contracts that grant a buyer the obligation to purchase Soy beans or a seller to sell Soy
Beans at a predetermined price and date in the future. The data is captured from 9/17/2013 8:59:00 AM to
2/1/2021 10:59:01 PM at a minute interval.

4.1 Histogram of the soy beans futures

The following graph represents a plot of the histogram of the Chinese Soy Beans Futures.
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Fig. 1. Histogram of the soy beans futures

4.2 E-M Algorithm parameter estimates

4.2.1 k = 2-Components Gaussian Mixture

The data is presumed to be captured by two-component Gaussian mixtures with the following properties;

Table 1. k = 2 Component Parameter Estimates

Components µ̂ σ̂2 wi

Component 1 0.8319752 0.1114532 0.770054
Component 2 1.042019 0.03374 0.229946

From the Table 1 above, we notice that approximately 77% of the Soy Beans Futures data comes from the first
component of the Gaussian mixture with mean of 0.8319752 and variance of 0.1114532. The remaining 23%
comes from the second component with mean of 1.042019 and variance of 0.03374.
The following plot provides the fitted density and the kernel density of the mixture.

Fig. 2. 2-Component Gaussian Mixture
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4.2.2 k = 3-Components Gaussian Mixture

Here, the assumption is that the data is captured by three components Gaussian Mixture distribution with the
following properties;

Table 2. k = 3 Components Parameter Estimates

Components µ̂ σ̂2 wi

Component 1 0.6828147 0.03563177 0.2101411
Component 2 0.8633565 0.04628462 0.46767
Component 3 1.033619 0.0380815 0.32219

From the Table 2 above, we find that approximately 21% of the data comes from the first component, 47% from
the second component, and 32% from the third component of the Gaussian Mixture.
The graph below provides the fitted and kernel of the mixture.

Fig. 3. 3-Component Gaussian Mixture

4.2.3 k = 4-Components Gaussian Mixture

The assumption here is that the high-frequency financial data is captured by four-component Gaussian Mixture
with the following properties;

Table 3. k = 4 Components Parameter Estimates

Components µ̂ σ̂2 wi

Component 1 0.6725753 0.0224159 0.186337
Component 2 0.8180116 0.029404 0.26056
Component 3 0.9085797 0.025099 0.249615
Component 4 1.037975 0.034785 0.303484

From the Table 3, we notice that approximately 18.6% of the data came from the first component, 26.1% from
the second component, 25% from the third component, and 30.3% from the fourth component.
The graph below shows the kernel and the fitted densities of the mixture.
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Fig. 4. 4-Components Gaussian Mixture

4.3 Goodness of fit test

We test how well the mixture model captures the high-frequency financial data using the Bayesian Information
Criterion. This is the most preferred method because it penalizes models with a high number of clusters therefore
preventing over-fitting. We fit 13 models each time with an additional component starting with one component
and BIC values recorded. The model with the least value of BIC will be the one with an optimal number of
components. The results are shown below;

Table 4. BIC Values

Number of Components BIC

1 1089448.0
2 1082600.8
3 1082717.7
4 1077934.7
5 1080019.7
6 1076824.3
7 1054171.3
8 1049752.4
9 1047100.4
10 1040512.3
11 1020806.9
12 821338.7
13 730082.0

From Table 4 above, we find that as the number of components increases, the BIC values reduce. This means
that the more the number of components the better the model. Even though we have to be very cautious not
to have a model that over-fits the data, the BIC in this case seems to have ignored the possibility of over-fitting
the data as the complexity of the mixture models increases. We, therefore, cannot decide certainly that the
best model is the one with the highest number of components, therefore we ignore this approach and look at its
extension.
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4.3.1 The BIC Gradient

This is the slope or rate of change of the values of BIC with respect to a set of parameters in a mixture model. It
is preferred since in this case, we are dealing with a probabilistic model and sensitivity to over-fitting is critical.
We calculate the gradient of the BIC scores. The simple rule of calculating the gradient of a curve applies here.
In addition, if two points on the BIC curve have the same values, then their gradient is zero. Otherwise, if the
two points have different values, their gradient can either be positive or negative depending on which value is
bigger, the first or second. The calculated values are as follows;

Table 5. BIC Gradient Values

Number of Components BIC Gradient

1 -91254.47116
2 -199467.19126
3 -19703.28905
4 -6610.84811
5 -2619.83574
6 60.39244
7 -23452.38986
8 -3155.35378
9 -1646.44616
10 101.47218
11 -4461.48946
12 -2049.67897
13 369.57305

The Table 5 above can be represented in form of a graph as follows;

Fig. 5. Gradient of BIC vs Number of Components

From the graph above, we see clearly that starting from five components, the gradient becomes almost constant.
This means that increasing the number of components does not contribute much gain to the mixture model.
Therefore, from this approach, the best model is the one with four components with properties as in Table 3.
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4.3.2 The Minimum Message Length

The MML is another statistical criterion used to select the best model that offers a balance between model
complexity and optimal fit to the data. The ”message length” refers to the total amount of information required
to describe the model and the encoded data based on how well the data is captured by the model. A good
model is a ”simple” model, one that compresses the length of the total message to as minimum as possible. If
the model is too simple, it fails to capture the data well, otherwise, it overfits the data. The criterion here is to
choose the model with the smallest MML. The plot is shown below:

Fig. 6. MML for Gaussian Mixture Models

From the plot above, the values of the MML decrease significantly between k = 1 and k = 3. This shows that
the model improves in performance as the number of components increases. After k = 3 components, the values
of MML start to stabilize with minimal change as the number of components increases past k = 4 components.
This is the point of diminishing improvements in the values of the MML also known as the ”elbow” point.
Adding more components after k = 4 therefore only makes the model capture the noise in the data and not
important patterns in the data. This therefore overfits the data. Therefore, by this criterion, the best model is
the one with k = 4 components. This result is consistent with 4.3.1.

5 Conclusion and Recommendation

Gaussian Mixture Models have been used in Machine Learning to cluster data especially when conducting market
research and segmentation of customers. They have also been used in medicine as medical imaging tools, and
other areas such as density estimation, anomaly detection, and many more. In this application, these models
have been used in fitting financial data exhibiting high-frequency properties, which, cannot be modeled by
Gaussian distribution because of fat tails and skewed properties. From this research we find that;

� From section 4.2 we find that the Gaussian Mixtures parameters have been well estimated by use of a
powerful machine learning algorithm called Expectation Maximization Algorithm. This algorithm has
been applied in this case because in the data we have more than one group of data coming from more
than one Gaussian distribution. What is not known is which group of data has come from which Gaussian
distribution.

� We have also obtained the curves of the kernel and the fitted distributions and from the look of the
different models with different numbers of components, we find that the best model is the one with four
components.

� In section 4.3, we computed the BIC scores for each mixture model with an increasing number of
components and found out that this criterion fails to penalize over-fitting as the complexity of the mixture
models increases. We therefore could not make conclusions on the optimal number of components based
on BIC alone.
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� As a result, we computed the gradients of BIC (4.3.1) and fiting the curve against the number of
components. From this curve, we find that from five components onwards, the BIC gradient is almost
constant. This means that from there, increasing the number of components does not contribute any
positive change or does not make the model better. From this, we find that the best model is the one
with four optimal numbers of components which proves 4.2.3.

We therefore recommend that future studies, especially in the financial market derivatives and high-frequency
financial data, apply the concept of Gaussian Mixture modeling in risk management and derivative pricing.
We also encourage more research in this field, especially, on the slow convergence of the Gaussian Mixtures
to eliminate any possible mistake that might occur as a result of this limitation. The use of Expectation
Maximization algorithm in parameter estimation especially in finacial models where there is a possibility of
missing information, should be encouraged not only in Gaussian Mixtures but also in other models.
Finally, we encourage the use of Gaussian Mixtures in modeling financial data, unlike the Gaussian distribution
which can possibly underestimate risk as a result of its short tails.
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