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Abstract

Our first two experiments on adapting a high-structure course model to an essentially open-

enrollment university produced negative or null results. Our third experiment, however,

proved more successful: performance improved for all students, and a large achievement

gap that impacted underrepresented minority students under traditional lecturing closed.

Although the successful design included preclass preparation videos, intensive active learn-

ing in class, and weekly practice exams, student self-report data indicated that total study

time decreased. Faculty who have the grit to experiment and persevere in making evidence-

driven changes to their teaching can reduce the inequalities induced by economic and edu-

cational disadvantage.

A recent meta-analysis found that students in lecture-based science, technology, engineering,

and mathematics (STEM) courses are 1.5 times more likely to fail, on average, than students in

courses with at least some active learning [1]. Furthermore, some course designs with active

learning reduce or eliminate achievement gaps that have traditionally harmed underrepre-

sented or underprepared students [2,3]. In courses with active learning, students are not just

listening during class but, rather, engaged in doing meaningful learning activities. Based on

results like these, calls for the use of active learning in STEM classes have reached a crescendo

[4].

Individual results vary, however: some implementations of active learning produce no

change or even reduced student performance compared with lecturing [1]. How can faculty

make sure they don’t try active learning and fail?

Our answer to that question is straightforward. To implement evidence-based teaching

strategies effectively, faculty will need to pursue the same approach that they use when adopt-

ing a new technology in their bench or field research. Specifically, instructors need to follow

the literature closely, get initial training from experienced practitioners, start with limited tri-

als, be prepared for disappointing results at first, engage with colleagues who can provide feed-

back and advice, and be willing to make changes (via repeated attempts over time) that adapt
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the technique to their study system—in this case, to their course material and student popula-

tion [5,6].

What is a high-structure course?

Impressed with accumulating evidence on the efficacy of active learning, the first author set

out to implement a high-structure course design with the goal of improving student outcomes

compared with her lecture-based class. A high-structure design requires students to:

• learn basic content on their own prior to class, with a quiz based on assigned readings or

videos;

• apply the content to higher-order problems through active-learning exercises during class,

usually by working with peers and getting feedback from the instructor [1]; and

• test their understanding after class by taking a low-stakes quiz or practice exam.

In essence, a high-structure course brackets intensive active learning during face-to-face

interactions in the classroom with individual preparation prior to class and self-testing after

[3]. Flipped models are similar, but they leave out the self-testing element that occurs after

class and prior to high-stakes exams.

Designs like this have been extremely effective in the hands of instructional faculty who

work at flagship public universities [2,3]. But can they be successful when implemented by fac-

ulty who are hired and promoted primarily based on their productivity in bench- or field-

based research versus educational research? And can they work at regional, comprehensive

(master’s-granting) universities—for which admission requirements are minimal and students

are often underprepared?

We set out to answer these questions at Eastern Michigan University (EMU), a regional,

master’s-granting public university that admits almost all applicants to its undergraduate pro-

gram. Nearly half of EMU students are from low-income backgrounds, 35% transferred in

from other institutions, and 35% are underrepresented minorities (S1 Text). The course

involved was BIO 110, which is the first in a two-semester introductory biology sequence for

undergraduate science majors. BIO 110 is offered every semester, meets for two 75-minute

class sessions each week, includes a weekly 4-hour lab, and has a pre- or corequisite of college

algebra. Course content includes biological molecules, cell structure and function, energetics,

cell division, mendelian and population genetics, evolution, and ecology.

Gathering evidence: Comparing apples with apples

The first author partnered with the other authors on this study because she was committed

not only to changing how BIO 110 was taught but also to collecting and analyzing data on stu-

dent outcomes compared with the traditional mode of instruction. The goal was to change one

or more aspects of course design, evaluate the impact on student performance, and make fur-

ther adjustments if results were disappointing or iterate if results were inconclusive or

promising.

To study whether course innovations impact student performance, our team focused on

controlling for the instructor, the students, and the test.

• As we tried different iterations of the high-structure course design, we kept constant the

instructor, total student contact time in lecture sessions and labs, and course content. The

first author taught the course in a traditional fashion five times before implementing aspects

of high structure for the first time, and we used the last two of these terms as the lecture
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comparison group (the control group; Table 1). As a result, it is unlikely that differences in

student outcomes over time resulted from the instructor simply gaining experience with the

material.

• To control for possible among-term variation in the academic ability or preparation of EMU

students, we collected college admission test (ACT) scores and distilled them into a compos-

ite index. We then used this index in statistical analyses of course performance (S2 Text).

This made us confident that changes in student outcomes were not the result of changes in

student ability or preparation.

• We controlled for differences in exam difficulty in two ways: (1) we used Bloom’s taxonomy

of learning to characterize the cognitive challenge of each term’s exams, and (2) we calcu-

lated the fraction of exam questions that were reused from exams that were not returned to

students and thus were identical across terms. Both analyses showed that there was no

change in exam difficulty over the course of the study (S2 Text). This result gave us confi-

dence that increases in student performance weren’t due to assessments getting easier over

time.

Our data also indicated that the exams were not easy. The analysis based on Bloom’s taxon-

omy showed that exam questions in the study terms averaged at slightly above the conceptual

level, which is higher than the average reported for introductory biology exams in the largest

national sample in the literature [7].

To measure student outcomes, we evaluated both exam scores and failure rates—the latter

calculated as the percentage of students who withdrew or received a D or F grade (“DFW

rate”). Because high-structure courses add a large number of course points based on participa-

tion, we were concerned about grade inflation—specifically, the hypothesis that the DFW rate

could go down in a high-structure course simply because struggling students amass participa-

tion-based nonexam points. To test this hypothesis, we analyzed simple linear regressions of

the percent of exam points earned on total points earned and, thus, grade. The results suggest

Table 1. Changes in course design.

During class

Experimental group Before class Overall style Clickers In-class

questions posed

by instructor

After class

Control

(two semesters, four total class

sections; N for each section = 66,

143, 56, 144)

Recommended textbook reading Lecture For points; answered

in groups

Few, answered

by volunteers

Online homework, 15–30

questions, one per week

Experiment 1 (one semester, two

total class sections; N for each

section = 60, 150)

No change No change No change No change Online practice exam

with time limit, 15

questions, one per week

Experiment 2 (one semester, two

total class sections; N for each

section = 59, 154)

Required textbook reading, online

reading quiz, short-answer homework

due at beginning of class (hand-graded

by GAs)

Lecture-free; group

worksheets and

activities

For points; answered

alone first, then peer

instruction

Many, random

call for answers

Online practice exam

without time limit, 15

questions, one per week

Experiment 3 (three semesters,

four total class sections; N for

each section = 55, 88, 102, 153)

Required video, closed-notes short-

answer quiz over video at beginning of

class (peer-graded)

No change No change No change Online practice exam

without time limit, 20–30

questions, one per week

In each case, “No change” indicates no changes from the previous version of the class.

Abbreviation: GA, graduate student assistant

https://doi.org/10.1371/journal.pbio.3000359.t001
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that grades were not inflating because of nonexam points. In fact, compared with terms with

traditional instruction, exams seemed to be more important in explaining variation in final

grade as we implemented additional aspects of high structure (S2 Text).

If at first you don’t succeed . . .

During experiment 1, the first author taught BIO 110 by adding one element of high structure

to the course. Specifically, she replaced the traditional weekly homework assignment, consist-

ing of about 30 questions in various formats, with an autograded, online, weekly practice

exam. Practice exams differed from the homework assignments given in previous semesters in

three ways: (1) they consisted of 15 multiple-choice questions drawn from old exams, (2) they

could only be opened once instead of multiple times, and (3) all questions had to be completed

within 30 minutes instead of having no time limit. During class, the first author frequently

encouraged students to study the week’s material prior to taking each practice exam just as

they would study for a regular exam. Our rationale for implementing the practice exams was

that the incentive to “keep up” with a bit of exam-style studying every week throughout the

semester, coupled with regular exposure to actual exam questions, would improve student suc-

cess on regular exams. All other aspects of the course during this experiment 1 were the same

as the control semesters. The experiment was motivated by the hypothesis that practice exams

should have the highest benefit for students with the lowest cost of implementation, as they

align closely with actual exams and are administered online.

The result? Both measures of student performance went down: exam scores decreased and

DFW rates increased. Clearly, substituting a timed practice exam for a packet of study ques-

tions did not benefit students. Adding just one of three elements of high structure was not

helpful. At EMU, the lowest-cost element of high structure, in terms of instructor effort, had a

high cost to students.

Try . . .

In response, the first author committed to implementing all three aspects of a high-structure

course to replicate the previously published designs as closely as possible. Prior to the start of

experiment 2, she used funds from an internal EMU award for an in-person visit to the Uni-

versity of Washington to learn through observing the classroom dynamics of her collaborators.

During the experiment 2 semester, students in the first author’s course prepared for each class

session by (1) completing an assigned reading from the textbook, (2) taking an online, auto-

graded quiz over the prereading, and (3) answering a set of open-response, guided-reading

questions modeled on materials developed during a successful implementation of high struc-

ture [2]. Students turned in their written answers to the guided-reading questions at the begin-

ning of each class session; graduate teaching assistants graded these responses during class,

entered grades, and returned the assignments at the end of class.

During class, the instructor’s goal was to minimize the time spent on lecturing. Instead, stu-

dents (1) worked in groups to complete activities and worksheets; (2) answered 3–5 graded

clicker questions in the evidence-based, peer-instruction format [8]; and (3) were called on, at

random, to respond to frequent verbal questions posed by the instructor. In addition, students

completed autograded practice exams identical to those used in experiment 1, except that the

time limit was removed. Students could also open their practice exams multiple times, instead

of having to complete it in one sitting.

The result? There was no change in student exam performance or DFW rates relative to the

control (lecture) terms. The high-structure format—modeled closely after course designs that
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had been successful at flagship public universities [2,3] and at a highly selective private institu-

tion [9]—was not helping EMU students.

Try again

Experiment 2 provided a key observation: the first author repeatedly found students were

unable to carry out the planned in-class activities. This observation resonated with prior stud-

ies showing that elaborative interrogation, which occurred during experiment 2’s in-class

activities, only benefits students with strong background knowledge [10]. BIO 110 students

appeared to be struggling with the critically important preclass preparation phase of the high-

structure model. We hypothesized that this problem was due to a deficit in reading compre-

hension caused by economic and educational disadvantage. A comparison of average reading

comprehension scores on college admission tests supported this hypothesis: at one of the flag-

ship universities that pioneered the high-structure model, average scores for incoming fresh-

men were above the 80th percentile, whereas EMU students, in contrast, averaged in the 50th

percentile (S1 Text).

The first author responded by teaching BIO 110 using a modified version of the experiment

2 format. The major change was that before every class meeting, students watched a 15-minute

video lecture created by the instructor and then reviewed 15–20 questions on the material. The

videos were meant to explain the most important vocabulary and concepts relevant to each

face-to-face meeting; each took about 4 hours to produce. The first author used teaching

release time she received through an internal EMU award to create the video lectures. Each

class session then began with a closed-notes, short-answer quiz with two questions from the

15–20 provided. Quizzes were peer-graded immediately and returned to their owner. Each stu-

dent then entered their quiz grade using their clicker (personal response system). Quizzes

were collected, and the accuracy of student-entered scores was spot-checked after class; the

penalty for entering an incorrect quiz score entry was a 15% deduction in points from the

overall quiz grade for the semester. Other aspects of the course were identical to experiment 2,

except that the number of practice exam questions was expanded to 20–30 each week.

The changes in course design that occurred over the three experiments (Table 1) are backed

by data from a classroom observation tool [11] (S3 Text). In experiment 2 and experiment 3,

(1) the instructor made extensive use of random call as a method for keeping students account-

able for in-class group work [12]; (2) preclass preparation was used to help students become

grounded in relevant vocabulary and concepts prior to class [13], and the instructor made a

large increase in the cognitive challenge of in-class activities [14]; (3) clicker use became more

evidence-based with the implementation of peer instruction [8]; and (4) students spent most

of each class period discussing problems with peers. An example of a typical class session dur-

ing experiment 3 is provided (S6 Text, S1 Video, S1 PowerPoint).

The result? Controlling for ACT scores, gender, and transfer status, exam scores during

experiment 3 increased by an average of 3.8% (Fig 1A; S4 Text; S1 Data). Controlling for

underrepresented minority (URM) status, DFW rates saw a highly significant drop (Fig 1B; S4

Text; S1 Data); raw DFW rates went from 48% to 25% (S4 Text; S1 Data). Even though exams

were equivalent in difficulty, students in experiment 3 did much better on average than stu-

dents in the control, lecture-based semesters—a result consistent with gains documented in a

recent meta-analysis of active-learning interventions [1].

But just as—or even more—important, our data showed that the course design in experi-

ment 3 had a disproportionately beneficial impact on URM students in BIO 110—over 85% of

whom self-identify as African American. In experiment 3, persistent achievement gaps closed

(Fig 2; S1 Data). Under lecturing, URM students with average ACT scores had a 73% chance
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of failing; in experiment 3, this fell to 34%. In the regression model of failure rates, the interac-

tion between experiment 3 as a treatment and URM status was statistically significant (S4 Text;

S1 Data). Although this term was not significant in the regression model of exam scores when

controlling for ACT (S4 Text; S1 Data), it was retained in the best model—providing strong

support for an interaction between treatment and URM status in explaining exam score per-

formance. In addition, the experiment 3 by URM status interaction was statistically significant

in the model without an ACT term, which included 187 students with missing ACT data. That

analysis provides a much larger sample size and conforms to the “transcriptable” performance

that students see, and it indicates that all students did 3.9% better on exams in experiment 3

compared with terms with lecturing, with URM students getting an additional 5.2% bump (S4

Text; S1 Data). Taken together, the exam score analyses suggest that the dramatic impact on

Fig 1. Students in Exp. 3 had increased exam performance and lower failure rates. The data points are model-predicted average exam points earned

on each exam (A) and percent chance of earning a D or F or withdrawing from the course (B) (S1 Data). Predictions are for students with average ACT

scores in the study sample. Error bars represent the standard error around the estimate. Exp., experiment; W, withdrawal.

https://doi.org/10.1371/journal.pbio.3000359.g001

Fig 2. Achievement gaps shrank in experiment 3. The bars are model-predicted average exam points earned on each exam (A) and percent chance of

earning a D or F or withdrawing from the course (B) (S1 Data). Predictions are for students in these courses, with the average score for the summary

variable based on ACT reading, math, English, and science reasoning scores. Error bars represent the standard error around the estimate. URM,

underrepresented minority; W, withdrawal.

https://doi.org/10.1371/journal.pbio.3000359.g002
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failure rates for URM students was driven by disproportionately better performance on exams.

Why do URM students benefit more than other subpopulations? Active learning increases

social integration, particularly for underrepresented groups [2], and a sense of belonging is

important for success in the sciences. However, the in-class active learning was the same in

our experiments 2 and 3, yet we only observed gains in student success in experiment 3. This

suggests that the format of preclass information delivery—video lectures in experiment 3—is

particularly important for the population of students at EMU. In effect, the experiment 3

course design helped underrepresented students overcome deficits in preparation caused by

the circumstances of their birth. This study succeeded in replicating reductions in achievement

gaps that have occurred at selective and highly selective institutions [2,3,9].

True grit

In this study, we describe hypothesis-driven adjustments to the course design, intense effort,

and several iterations to translate an evidence-based course developed at flagship, research-

intensive universities to the context of an open-enrollment, regional public university, at

which low-income students are a near majority. Our initial and repeated failure will be familiar

to any scientist: it is analogous to the process that researchers go through when adopting a new

technique in bench or field work. It is almost unheard-of for a new protocol, reagent, or piece

of equipment to work the first time. Research groups routinely have to make adjustments to fit

their apparatus, goals, and study system.

In this case, the key adjustment was changing from preclass reading assignments and online

prep quizzes to preclass video lectures and in-class prep quizzes. This change was motivated by

two key factors: (1) the observation that open-enrollment institutions host a higher percentage

of underprepared students than selective institutions and (2) the hypothesis that, even if

underprepared students have difficulty extracting information from textbook reading at this

early stage in their careers, they can prepare for class effectively by viewing minilectures that

are authored by the instructor of record and that focus on key vocabulary and concepts.

Our data yielded two additional insights. First, the elements of course structure that were

added in experiments 2 and 3 did not burden students in terms of time demands. Instead, self-

reported time spent studying outside of class decreased—even though student performance

increased (Fig 3; S5 Text; S1 Data). This result suggests that the additional structure helped stu-

dents become much more efficient in their studying. Second, student evaluations of teaching

improved overall. As Table 2 shows, the percentage of students rating the course and/or the

instructor as above average increased in most cases, implying that the students recognized the

value of the high-structure course design and appreciated the instructor’s efforts to improve

their performance.

It is important to recognize, though, that adopting evidence-based teaching practices is

challenging for STEM faculty who identify primarily as bench- or field-based researchers [15].

Changing a traditional course to a high-structure model with good fidelity of implementation

requires time, institutional support, intentional effort to gain expertise and mentoring, and

perseverance. The first author particularly needed time and institutional support in the semes-

ters preceding her major course structure changes, to facilitate in-person learning from experi-

enced instructors, and to create instructional videos. After this initial investment, however, the

high-structure course has not been more time-consuming for the first instructor to run than

her traditional lecture course. The trait of perseverance when making these changes may be

underappreciated, as surveys have shown that one-third of faculty who try evidence-based

teaching strategies give up after an initial attempt [5]. Adapting techniques and retrying after

initial failures requires a deep personal commitment, as well as emotional support from skilled
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Table 2. Student evaluations of teaching.

Overall rating of course

Semester Percent of students selecting

much below or below average

Percent of students

selecting average

Percent of students selecting

above or much above average

Control semester 1 11 25 64

Control semester 2 13 27 60

Experiment 1 9 23 68

Experiment 2 14 30 55

Experiment 3 semester 1 8 19 73

Experiment 3 semester 2 2 13 85

Experiment 3 semester 3 5 36 58

Overall rating of teaching effectiveness

Semester Percent of students selecting

much below or below average

Percent of students

selecting average

Percent of students selecting

above or much above average

Control semester 1 10 26 64

Control semester 2 10 18 72

Experiment 1 13 15 73

Experiment 2 13 19 68

Experiment 3 semester 1 4 13 82

Experiment 3 semester 2 2 13 85

Experiment 3 semester 3 12 8 79

Course evaluation response rates were 58% in control term 1, 55% in control term 2, 61% in the experiment 1 term,

68% in the experiment 2 term, 65% in experiment 3 term 1, 71% in experiment 3 term 2, and 75% in experiment 3

term 3.

https://doi.org/10.1371/journal.pbio.3000359.t002

Fig 3. Students in experiment 3 spent less time studying. The boxes indicate the first quartile, median, and third

quartile of the raw data (not model-predicted) of self-reported time spent studying per week for introductory biology;

the whiskers represent 1.5 times the interquartile range; the dots are data points outside this range (S1 Data). Although

we do not have data from control semesters, the course format was identical to that of experiment 1 except for

replacing homework problems with a timed practice exam (Table 1).

https://doi.org/10.1371/journal.pbio.3000359.g003
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peers. Using this project as a model, we hope other faculty will make class-based research an

important part of their overall research and teaching portfolio—making observations about

their students, posing testable hypotheses, performing experimental interventions, and collect-

ing data on outcomes.

This project succeeded in improving exam scores, lowering failures rates for all students,

and reducing an achievement gap affecting URM students. These outcomes were immensely

rewarding but only possible because of professional grit [16]. Perseverance in the classroom is

fueled by a passionate commitment to student success, just as perseverance at the lab bench is

fueled by a passionate desire to know.
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