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Abstract

Humans are remarkably skilled at listening to one speaker out of an acoustic mixture of sev-

eral speech sources. Two speakers are easily segregated, even without binaural cues, but

the neural mechanisms underlying this ability are not well understood. One possibility is that

early cortical processing performs a spectrotemporal decomposition of the acoustic mixture,

allowing the attended speech to be reconstructed via optimally weighted recombinations that

discount spectrotemporal regions where sources heavily overlap. Using human magnetoen-

cephalography (MEG) responses to a 2-talker mixture, we show evidence for an alternative

possibility, in which early, active segregation occurs even for strongly spectrotemporally over-

lapping regions. Early (approximately 70-millisecond) responses to nonoverlapping spectro-

temporal features are seen for both talkers. When competing talkers’ spectrotemporal

features mask each other, the individual representations persist, but they occur with an

approximately 20-millisecond delay. This suggests that the auditory cortex recovers acoustic

features that are masked in the mixture, even if they occurred in the ignored speech. The

existence of such noise-robust cortical representations, of features present in attended as

well as ignored speech, suggests an active cortical stream segregation process, which could

explain a range of behavioral effects of ignored background speech.

Introduction

When listening to an acoustic scene, the signal that arrives at the ears is an additive mixture of

the different sound sources. Listeners trying to selectively attend to one of the sources face the

task of determining which spectrotemporal features belong to that source [1]. When multiple

speech sources are involved, as in the classic cocktail party problem [2], this is a nontrivial

problem because the spectrograms of the different sources often have strong overlap. Never-

theless, human listeners are remarkably skilled at focusing on one out of multiple talkers [3,4].
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Binaural cues can facilitate segregation of different sound sources based on their location [5]

but are not necessary for this ability, because listeners are able to selectively attend even when

2 speech signals are mixed into a monophonic signal and presented with headphones [6]. Here

we are specifically interested in the fundamental ability to segregate and attend to one out of

multiple speakers even without such external cues.

The neural mechanisms involved in this ability are not well understood, but previous

research suggests at least 2 separable cortical processing stages. In magnetoencephalography

(MEG) responses to multiple talkers [7], the early (approximately 50-millisecond) cortical

component is better described as a response to the acoustic mixture than as the sum of the

responses to the individual (segregated) source signals, consistent with an early unsegregated

representation of the mixture. In contrast, the later (> 85 millisecond) response component is

dominated by the attended (segregated) source signal. Recent direct cortical recordings largely

confirm this picture, suggesting that early responses in Heschl’s gyrus (HG) reflect a spectro-

temporal decomposition of the acoustic mixture that is largely unaffected by selective atten-

tion, whereas later responses in the superior temporal gyrus (STG) dynamically change to

represent the attended speaker [8]. In general, cortical regions further away from core auditory

cortex tend to mainly reflect information about the attended speaker [9]. Together, these

results suggest a cortical mechanism that, based on a detailed representation of the acoustic

input, detects and groups features belonging to the attended source.

A long-standing question is whether early cortical processing of the acoustic mixture is

restricted to passive spectrotemporal filtering, or whether it involves active grouping of acous-

tic features leading to the formation of auditory object representations. The filter theory of

attention suggests that early representations reflect physical stimulus characteristics indepen-

dent of attention, with attention selecting a subset of these for further processing and semantic

identification [10,11]. Consistent with this, electroencephalography (EEG) and MEG results

suggest that time-locked processing of higher order linguistic features, such as words and

meaning, is restricted to the attended speech source [12,13]. However, it is not known whether,

in the course of recovering the attended source, the auditory cortex also extracts acoustic fea-

tures of the ignored source from the mixture. Individual intracranially recorded HG responses

to a 2-speaker mixture can be selective for either one of the speakers, but this selectivity can be

explained merely by spectral response characteristics favoring the spectrum of a given speaker

over the other [8]. A conservative hypothesis is thus that early auditory cortical responses rep-

resent acoustic features of the mixture based on stable (possibly predefined) spectrotemporal

receptive fields, allowing the attended speech to be segregated through an optimally weighted

combination of these responses. Alternatively, the auditory cortex could employ more active

mechanisms to dynamically recover potential speech features, regardless of what stream they

belong to. Selective attention could then rely on these local auditory (proto-) objects to recover

the attended speech [14]. This hypothesis critically predicts the existence of representations of

acoustic features from an ignored speech source, even when those features are not apparent in

the acoustic mixture, i.e., when those features are masked by acoustic energy from another

source. Here we report evidence for such representations in human MEG responses.

Cortical responses to speech reflect a strong representation of the envelope (or spectro-

gram) of the speech signal [15,16]. Prior work has also shown that acoustic onsets are promi-

nently represented in auditory cortex, both in naturalistic speech [17,18] and in nonspeech

stimuli [19,20]. Studies using paradigms similar to the one used here often predicted brain

responses from only envelopes or only onsets [16,21–24], but more recent studies show that

both representations explain nonredundant portions of the responses [12,18]. Behaviorally,

acoustic onsets are also specifically important for speech intelligibility [25,26]. Here we con-

sider both envelope and onset features but focus on onset features in particular because of
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their relevance for stream segregation, as follows [1]. If acoustic elements in different fre-

quency regions are co-modulated over time, they likely stem from the same physical source

[27]. A simultaneous onset in distinct frequency bands thus provides sensory evidence that

these cross-frequency features originate from the same acoustic source and should be pro-

cessed as an auditory object. Accordingly, shared acoustic onsets promote perceptual grouping

of acoustic elements into a single auditory object, such as a complex tone and, vice versa, sepa-

rate onsets lead to perceptual segregation [28,29]. For example, the onset of a vowel is charac-

terized by a shared onset at the fundamental frequency of the voice and its harmonics.

Correspondingly, if the onset of a formant is artificially offset by as little as 80 milliseconds, it

can be perceived as a separate tone rather than as a component of the vowel [30]. This link to

object perception thus makes acoustic onsets particularly relevant cues, which might be repre-

sented distinctly from envelope cues and used to detect the beginning of local auditory objects,

and thus aid segregation of the acoustic input into different, potentially overlapping auditory

objects.

We analyzed human MEG responses to a continuous 2-talker mixture to determine to what

extent the auditory cortex reliably tracks acoustic onset or envelope features of the ignored

speech, above and beyond the attended speech and the mixture. Participants listened to 1-min-

ute-long continuous audiobook segments, spoken by a male or a female speaker. Segments

were presented in 2 conditions: a single talker in quiet (“clean speech”), and a 2-talker mixture,

in which a female and a male speaker were mixed at equal perceptual loudness. MEG responses

were analyzed as additive, linear response to multiple concurrent stimulus features (see Fig 1).

First, cross-validated model comparisons were used to determine which representations

Fig 1. Additive linear response model based on STRFs. (A) MEG responses recorded during stimulus presentation

were source localized with distributed minimum norm current estimates. A single virtual source dipole is shown for

illustration, with its physiologically measured response and the response prediction of a model. Model quality was

assessed by the correlation between the measured and the predicted response. (B) The model’s predicted response is

the sum of tonotopically separate response contributions generated by convolving the stimulus envelope at each

frequency (C) with the estimated TRF of the corresponding frequency (D). TRFs quantify the influence of a predictor

variable on the response at different time lags. The stimulus envelopes at different frequencies can be considered a

collection of parallel predictor variables, as shown here by the gammatone spectrogram (8 spectral bins); the

corresponding TRFs as a group constitute the STRF. Physiologically, the component responses (B) can be thought of as

corresponding to responses in neural subpopulations with different frequency tuning, with MEG recording the sum of

those currents. MEG, magnetoencephalographic; STRF, spectrotemporal response function; TRF, temporal response

function.

https://doi.org/10.1371/journal.pbio.3000883.g001
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significantly improve prediction of the MEG responses. Then, the resultant spectrotemporal

response functions (STRFs) were analyzed to gain insight into the nature of the

representations.

Results and discussion

Auditory cortex represents acoustic onsets

MEG responses to clean speech were predicted from the gammatone spectrogram of the stim-

ulus and, simultaneously, from the spectrogram of acoustic onsets (Fig 2A). Acoustic onsets

were derived from a neural model of auditory edge detection [19]. The 2 predictors were each

binned into 8 frequency bands, such that the MEG responses were predicted from a model of

the acoustic stimulus encompassing 16 time series in total. Each of the 2 predictors was

assessed based on how well (left-out) MEG responses were predicted by the full model, com-

pared with a null model in which the relevant predictor was omitted. Both predictors signifi-

cantly improve predictions (onsets: tmax = 12.00, p� 0.001; envelopes: tmax = 9.39, p� 0.001),

with an anatomical distribution consistent with sources in HG and STG bilaterally (Fig 2B).

Because this localization agrees with findings from intracranial recordings [8,17], results were

henceforth analyzed in an auditory region of interest (ROI) restricted to these 2 anatomical

landmarks (Fig 2C). When averaging the model fits in this ROI, almost all subjects showed evi-

dence of responses associated with both predictors (Fig 2D).

Fig 2. MEG responses to clean speech. (A) Schematic illustration of the neurally inspired acoustic edge detector model, which was used to generate onset

representations. The signal at each frequency band was passed through multiple parallel pathways with increasing delays, so that an “edge detector” receptive

field could detect changes over time. HWR removed the negative sections to yield onsets only. An excerpt from a gammatone spectrogram (“envelope”) and

the corresponding onset representation are shown for illustration. (B) Regions of significant explanatory power of onset and envelope representations,

determined by comparing the cross-validated model fit from the combined model (envelopes + onsets) to that when omitting the relevant predictor. Results

are consistent with sources in bilateral auditory cortex (p� 0.05, corrected for whole brain analysis). (C) ROI used for the analysis of response functions,

including superior temporal gyrus and Heschl’s gyrus. An arrow indicates the average dominant current direction in the ROI (upward current), determined

through the first principal component of response power. (D) Individual subject data corresponding to (B), averaged over the ROI in the LH and RH,

respectively. (E) STRFs corresponding to onset and envelope representations in the ROI; the onset STRF exhibits a clear pair of positive and negative peaks,

while peaks in the envelope STRF are less well-defined. Different color curves reflect the frequency bins, as indicated next to the onset and envelope

spectrograms in panel A. Shaded areas indicate the within-subject standard error (SE) [31]. Regions in which STRFs differ significantly from 0 are marked

with more saturated (less faded) colors (p� 0.05, corrected for time/frequency). Data are available in S1 Data. HWR, half-wave rectification; LH, left

hemisphere; MEG, magnetoencephalographic; RH, right hemisphere; ROI, region of interest; SE, standard error; STRF, spectrotemporal response function;

TRF, temporal response function.

https://doi.org/10.1371/journal.pbio.3000883.g002
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Auditory cortical STRFs were summarized for each subject and hemisphere using a sub-

ject-specific spatial filter based on principal component analyses of overall STRF power in the

ROI. The average direction of that spatial filter replicates the direction of the well-known audi-

tory MEG response (Fig 2C, arrows). This current vector is consistent with activity in core

auditory cortex and the superior temporal plane. However, MEG sensors are less sensitive to

radial currents, as would be expected from lateral STG areas implicated by intracranial record-

ings [8]. Because of this, we focus here on the temporal information in STRFs rather than

drawing conclusions from the spatial distribution of sources. STRFs can thus be interpreted as

reflecting different processing stages associated with different latencies, possibly involving

multiple regions in the superior temporal lobe. STRFs were initially separately analyzed by

hemisphere, but because none of the reported results interact significantly with hemisphere,

the results shown are collapsed across hemisphere to simplify presentation.

STRFs to acoustic onsets exhibit a well-defined 2-peaked shape, consistent across frequency

bands (Fig 2E). An early, positive peak (average latency 65 milliseconds) is followed by a later,

negative peak (126 milliseconds). This structure closely resembles previously described audi-

tory response functions to envelope representations when estimated without consideration of

onsets [16]. In comparison, envelope STRFs in the present results are diminished and exhibit a

less well-defined structure. This is consistent with acoustic onsets explaining a large portion of

the signal usually attributed to the envelope; indeed, when the model was refitted with only the

envelope predictor, excluding the onset predictor, the envelope STRFs exhibited that canonical

pattern and with larger amplitudes (see S1 Fig).

STRFs have disproportionately higher amplitudes at lower frequencies (Fig 2E), which is

consistent with previous tonotopic mapping of speech areas and may follow from the spectral

distribution of information in the speech signal [32,33]. This explanation is also supported by

simulations, where responses to speech were generated using equal temporal response func-

tions (TRFs) for each band, and yet estimated STRFs exhibited higher amplitudes in lower fre-

quency bands (see S1 Simulations, Fig S1).

Auditory cortex represents ignored speech

MEG responses to a 2-speaker mixture were then analyzed for neural representations of

ignored speech. Participants listened to a perceptually equal loudness mixture of a male and a

female talker and were instructed to attend to one talker and ignore the other. The speaker to

be attended was counterbalanced across trials and subjects. Responses were predicted using

both onset and envelope representations for: the acoustic mixture, the attended speech source,

and the ignored source (Fig 3A). The underlying rationale is that, because the brain does not

have direct access to the individual speech sources, if there is neural activity corresponding to

either source separately (above and beyond the mixture), this indicates that cortical responses

have segregated or reconstructed features of that source from the mixture. Both predictors rep-

resenting the ignored speech significantly improve predictions of the responses in the ROI

(both p< 0.001, onsets: tmax = 6.70, envelopes: tmax = 6.28; group level statistics were evaluated

with spatial permutation tests; subject-specific model fits, averaged in the ROI are shown in

Fig 3B). This result indicates that acoustic features of the ignored speech are represented

neurally even after controlling for features of the mixture and the attended source. The

remaining 4 predictors also significantly increased model fits (all p< 0.001; mixture onsets:

tmax = 8.61, envelopes: tmax = 5.70; attended onsets: tmax = 6.32, envelopes: tmax = 7.37).

Onset STRFs exhibit the same characteristic positive–negative pattern as for responses to a

single talker but with reliable distinctions between the mixture and the individual speech

streams (Fig 3C and 3D). The early, positive peak occurs earlier and has a larger amplitude for
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onsets in the mixture than for onsets in either of the sources (latency mixture: 72 milliseconds;

attended: 81 milliseconds, t25 = 4.47, p< 0.001; ignored: 89 milliseconds, t25 = 6.92, p< 0.001;

amplitude mixture > attended: t25 = 8.41, p< 0.001; mixture > ignored: t25 = 7.66, p< 0.001).

This positive peak is followed by a negative peak only in responses to the mixture (136 millisec-

onds) and the attended source (150 milliseconds; latency difference t25 = 3.20, p = 0.004). The

amplitude of these negative peaks is statistically indistinguishable (t25 = 1.56, p = 0.132).

The mixture predictor is not completely orthogonal to the source predictors. This might

raise a concern that a true response to the mixture might cause spurious responses to the

sources. Simulations using the same predictors as used in the experiment suggest, however,

that such contamination is unlikely to have occurred (see S1 Simulations).

Fig 3. Responses to the 2-speaker mixture, using the stream-based model. (A) The envelope and onset representations of the acoustic mixture and the 2

speech sources were used to predict MEG responses. (B) Individual subject model fit improvement due to each predictor, averaged in the auditory cortex

ROI. Each predictor explains neural data not accounted for by the others. (C) Auditory cortex STRFs to onsets are characterized by the same positive/

negative peak structure as STRFs to a single speaker. The early, positive peak is dominated by the mixture but also contains speaker-specific information. The

second, negative peak is dominated by representations of the attended speaker and, to a lesser extent, the mixture. As with responses to a single talker, the

envelope STRFs have lower amplitudes, but they do show a strong and well-defined effect of attention. Explicit differences between the attended and ignored

representations are shown in the bottom row. Details as in Fig 2. (D) The major onset STRF peaks representing individual speech sources are delayed

compared with corresponding peaks representing the mixture. To determine latencies, mixture-based and individual-speaker-based STRFs were averaged

across frequency (lines with shading for mean ±1 SE). Dots represent the largest positive and negative peak for each subject between 20 and 200 milliseconds.

Note that the y-axis is scaled by an extra factor of 4 beyond the indicated break points at y = 14 and −6. Data are available in S2 Data. LH, left hemisphere;

MEG, magnetoencephalography; RH, right hemisphere; ROI, region of interest; SE, standard error; STRF, spectrotemporal response function.

https://doi.org/10.1371/journal.pbio.3000883.g003
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Envelope processing is strongly modulated by selective attention

Although the envelope STRFs seem to be generally less structured than those of the onsets, a

comparison of the STRFs to the attended and the ignored source revealed a strong and well-

defined effect of attention (Fig 3C, right column). The attended-ignored difference wave exhib-

its a negative peak at approximately 100 milliseconds, consistent with previous work [16], and

an additional positive peak at approximately 200 milliseconds. In contrast with previous work,

however, a robust effect of attention on the envelope representation starts almost as early as the

very earliest responses. Thus, accounting for responses to onset features separately reveals that

envelope processing is thoroughly influenced by attention. The reason for this might be that

onsets often precede informative regions in the spectrogram, such as the spectral detail of voiced

segments. The onsets might thus serve as cues to direct attention to specific regions in the spec-

trogram [28], which would allow early attentional processing of the envelope features.

Auditory cortex “un-masks” masked onsets

The analysis using the stream-based predictors suggests that the auditory cortex represents

acoustic onsets in both speech sources separately, in addition to onsets in the acoustic mixture.

This is particularly interesting because, while envelopes combine mostly in an additive man-

ner, acoustic onsets may experience negative interference. This can be seen in the spectro-

grams in Fig 3A: The envelope mixture representation largely looks like a sum of the 2 stream

envelope representations. In contrast, the onset mixture representation has several features

that have a lower amplitude than the corresponding feature in the relevant source. The finding

of a separate neural representation of the source onsets thus would suggest that the auditory

cortex reconstructs source features that are masked in the mixture. Such reconstruction might

be related to instances of cortical filling-in, in which cortical representations show evidence of

filling in missing information to repair degraded, or even entirely absent, input signals [34–

36]. The latency difference between mixture and source onsets might then reflect a small addi-

tional processing cost for the recovery of underlying features that are not directly accessible in

the sensory input.

However, the specifics of what we call mixture and source features depends to some degree

on the model of acoustic representations, i.e., the gammatone and edge detection models used

here. Specifically, source features that are here masked in the mixture might be considered

overt in a different acoustic model. It is unlikely that all our source features are, in reality,

overt, because then our mixture representation should not be able to predict any brain

responses beyond the acoustic sources. However, the apparent neural representations of

stream-specific onsets could be of a secondary set of features that the mixture is transparent to.

An example could be a secondary stage of onset extraction based on pitch; the delay in

responses to source specific onsets might then simply reflect the latency difference of spectral

and pitch-based onset detection.

Although these 2 possibilities could both explain the results described so far, they make dif-

ferent predictions regarding responses to masked onsets. A passive mechanism, based on fea-

tures to which the mixture is transparent, should be unaffected by whether the features are

masked in the gammatone representation, because the masking does not actually apply to

those features. Such responses should thus be exhaustively explained by the stream-based

model described in Fig 3. On the other hand, an active mechanism that specifically processes

masked onsets might generate an additional response modulation for masked onsets. To test

for such a modulation, we subdivided the stream-based onset predictors to allow for different

responses to overt and masked onsets. The new predictors were implemented as element-wise

operations on the onset spectrograms (Fig 4A). Specifically, for each speech source, the new
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“masked onsets” predictor models the degree to which an onset in the source is attenuated

(masked) in the mixture, i.e., the amount by which a segregated speech source exceeds the

(physically presented) resultant acoustic mixture, or zero when it does not: (max(source–mix-
ture, 0)). The new “overt onsets” predictor models all other time-frequency points, where an

onset in the source is also seen as a comparable onset in the mixture (element-wisemin(mix-
ture, source)). Note that with this definition the sum of overt and masked onsets exactly equals

the original speech source onset representation, i.e., the new predictors model the same onsets

but allow responses to differ depending on whether an onset is masked or not. Replacing the 2

speech-source-based onset predictors with the 4 overt/masked onset predictors significantly

improves the model fit (tmax = 6.81, p< 0.001), suggesting that cortical responses indeed dis-

tinguish between overt and masked onsets. Each of the 4 new predictors individually contrib-

utes to the MEG responses, although masked onsets do so more robustly (attended: tmax =

8.42, p< 0.001; ignored: tmax = 5.23, p< .001) than overt onsets (attended: tmax = 3.34,

p = 0.027; ignored: tmax = 3.82, p = 0.016; Fig 4B); this difference could be due to overt source

onsets being more similar to the mixture onsets predictor. Critically, the significant effect for

masked onsets in the ignored source confirms that the auditory cortex recovers masked onsets

even when they occur in the ignored source.

Masked onsets are processed with a delay and an early effect of attention

Model comparison thus indicates that the neural representation of masked onsets is signifi-

cantly different from that of overt onsets. The analysis of STRFs suggests that this is for at least

2 reasons (Fig 4C–4E): response latency differences and a difference in the effect of selective

attention.

First, responses to masked onsets are systematically delayed compared with overt onsets (as

can be seen in Fig 4D). Specifically, this is true for the early, positive peak (mixture: 72 millisec-

onds), both for the attended speaker (overt: 72 milliseconds, masked: 91 millisecond, t25 =

2.85, p = 0.009) and the ignored speaker (overt: 83 milliseconds, masked: 97 millisecond, t25 =

6.11, p< 0.001). It is also the case for the later, negative peak (mixture: 138 milliseconds),

which reflects only the attended speaker (overt: 133 milliseconds, masked: 182 milliseconds,

t25 = 4.45, p< 0.001). Thus, at each major peak, representations of masked onsets lag behind

representations of overt onsets by at least 15 milliseconds.

Second, for overt onsets, the early representations at the positive peak appear to be indepen-

dent of the target of selective attention (Fig 4C, top right). In contrast, for masked onsets, even

these early representations are enhanced by attention (Fig 4C, bottom right). This difference is

confirmed in a stream (attended, ignored) by masking (overt, masked) ANOVA on peak

amplitudes with a significant interaction (F(1,25) = 24.45, p< 0.001). For overt onsets, Fig 4E

might suggest that the early peak is actually enhanced for the ignored speaker; however, this

difference can be explained by the early onset of the second, negative response to attended

onsets, which overlaps with the earlier peak. This observation makes the early effect of atten-

tion for masked onsets all the more impressive, because the early peak is larger despite the

onset of the subsequent, negative peak (note the steeper slope between positive and negative

peak for attended masked onsets). Also note that we here interpreted the timing of the effect of

attention relative to the peak structure of the TRFs; in terms of absolute latency, the onset of

the effect of attention is actually more similar between masked and overt onsets (see Fig 4E).

Delayed response to masked onsets

Previous research has found that the latency of responses to speech increases with increasing

levels of stationary noise [37,38] or dynamic background speech (Fig 3 in [21]). Our results
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indicate that, for continuous speech, this is not simply a uniform delay but that the delay varies

dynamically for each acoustic element based on whether this element is overt or locally masked

by the acoustic background. This implies that the stream is not processed as a homogeneous

Fig 4. Responses to overt and masked onsets. (A) Spectrograms (note that in this Fig, the onset representations are placed below the envelope

representations, to aid visual comparison of the different onset representations) were transformed using element-wise operations to distinguish between overt

onsets, i.e., onsets in a source that are apparent in the mixture, and masked onsets, i.e., onsets in a source that are masked in the presence of the other source.

Two examples are marked by rectangles: The light blue rectangle marks a region with an overt (attended) onset, i.e., an onset in the attended source that also

corresponds to an onset in the mixture. The dark blue rectangle marks a masked (attended) onset, i.e., an onset in the attended source which is not apparent in

the mixture. (B) All predictors significantly improve the cross-validated model fit (note that improvements were statistically tested with a test sensitive to

spatial variation, whereas these plots show single-subject ROI average fits). (C) The corresponding overt/masked STRFs exhibit the previously described

positive–negative 2-peaked structure. The first, positive peak is dominated by a representation of the mixture but also contains segregated features of the 2

talkers. For overt onsets, only the second, negative peak is modulated by attention. For masked onsets, even the first peak exhibits a small degree of attentional

modulation. (D) Responses to masked onsets are consistently delayed compared with responses to overt onsets. Details are analogous to Fig 3D, except that

the time window for finding peaks was extended to 20–250 milliseconds to account for the longer latency of masked onset response functions. (E) Direct

comparison of the frequency-averaged onset TRFs highlights the amplitude differences between the peaks. For overt onsets, the negative deflection due to

selective attention starts decreasing the response magnitude even near the maximum of the first, positive peak. For masked onsets, the early peak reflecting

attended onsets is increased despite the subsequent enhanced negative peak. Results for envelope predictors are omitted from this figure because they are

practically indistinguishable from those in Fig 3. Data are available in S3 Data. LH, left hemisphere; RH, right hemisphere; ROI, region of interest; STRF,

spectrotemporal response function; TRF, temporal response function.

https://doi.org/10.1371/journal.pbio.3000883.g004
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entity of constant signal-to-noise ratio (SNR) but that the acoustic elements related to the

onsets constitute separate auditory objects, with processing time increasing dynamically as fea-

tures are more obscured acoustically. Notably, the same applies to the ignored speech stream,

suggesting that acoustic elements from both speakers are initially processed as auditory

objects.

The effect of SNR on response amplitude and latency is well established and clearly related

to the results here. We consider it unlikely that SNR can itself play the role of a causal mecha-

nistic explanation, because the measure of SNR presupposes a signal and noise that have

already been segregated. Consequently, SNR is not a property of features in the acoustic input

signal. Acoustic features only come to have an SNR after they are designated as acoustic objects

and segregated against an acoustic background, such that their intensity can be compared with

that of the residual background signal. This is illustrated in our paradigm in that the same

acoustic onset can be a signal for one process (when detecting onsets in the mixture) and part

of the noise for another (when attending to the other speaker). Rather than invoking SNR itself

as an explanatory feature, we thus interpret the delay as evidence for a feature detection mech-

anism that requires additional processing time when the feature in question is degraded in the

input—although leaving open the specific mechanism by which this happens. The addition of

stationary background noise to simple acoustic features is associated with increased response

latencies to those features as early as the brainstem response wave-V [39]. This observed shift

in latency is in the submillisecond range and may have a mechanistic explanation in terms of

different populations of auditory nerve fibers: Background noise saturates high spontaneous

rate fibers, and the response is now dominated by somewhat slower, low spontaneous rate

fibers [40]. In cortical responses to simple stimuli, like tones, much larger delays are observed

in the presence of static noise, in the order of tens of milliseconds [41].

Latency shifts due to absolute signal intensity [42] might be additive with shifts due to noise

[43]. Such a nonlinear increase in response latency with intensity might be a confounding fac-

tor in our analysis, which is based on linear methods: Compared with overt onsets, masked

onsets in the ignored talker should generally correspond to weaker onsets in the mixture. Split-

ting overt and masked onsets might thus improve the model fit because it allows modeling dif-

ferent response latencies for different intensity levels of onsets in the mixture, rather than

reflecting a true response to the background speech. In order to control for this possibility, we

compared the model fit of the background-aware model with a model allowing for 3 different

intensity levels of onsets in the mixture (and without an explicit representation of onsets in the

ignored speaker). The background speaker-aware model outperformed the level-aware model

(tmax = 9.21, p< 0.001), suggesting that the present results are not explained by this level-

based nonlinear response to the mixture. Furthermore, a background-unaware nonlinearity

would not explain the difference in the effect of attention between overt and masked onsets.

Together, this suggests that the observed delay is related to recovering acoustic source infor-

mation, rather than a level-based nonlinearity in the response to the mixture.

It is also worth noting that the pattern observed in our results diverges from the most com-

monly described pattern of SNR effects. Typically, background noise causes an amplitude

decrease along with the latency increase [38]: Although the latency shift observed here con-

forms to the general pattern, the amplitude of responses to masked onsets is not generally

reduced. Even more importantly, selective attention affects the delayed responses more than

the undelayed, suggesting that the delay is not a simple effect of variable SNR but is instead

linked to attentive processing. A study of single units in primary auditory cortex found that

neurons with delayed, noise-robust responses exhibited response properties suggestive of net-

work effects [44]. This is consistent with the interaction of selective attention and delay found

PLOS BIOLOGY Neural speech restoration at the cocktail party

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000883 October 22, 2020 10 / 22

https://doi.org/10.1371/journal.pbio.3000883


here on the early peak, because the delayed responses to masked onsets also exhibit more evi-

dence of goal-driven processing than the corresponding responses to overt onsets.

In sum, masking causes latency increases at different stages of the auditory system. These

latency shifts increase at successive stages of the ascending auditory pathway, as does the pre-

ponderance of noise-robust response properties [45]. It is likely that different levels of the

auditory system employ different strategies to recover auditory signals of interest and do so at

different time scales. Together with these considerations, our results suggest that the auditory

cortex actively recovers masked speech features, and not only of the attended, but also of the

ignored speech source.

Early effect of selective attention

Besides the shift in latency, response functions to overt and masked onsets differed in a more

fundamental way: While the early, positive response peak to overt onsets did not differentiate

between attended and ignored onsets, the early peak to masked onsets contained significantly

larger representations of attended onsets (see Fig 4C). Thus, not only do early auditory cortical

responses represent masked onsets, but these representations are substantively affected by

whether the onset belongs to the attended or the ignored source. This distinction could have

several causes. In the extreme, it could indicate that the 2 streams are completely segregated

and represented as 2 distinct auditory objects. However, it might also be due to a weighting of

features based on their likelihood of belonging to the attended source. This could be achieved,

for example, through modulation of excitability based on spectrotemporal prediction of the

attended speech signal [46]. Thus, onsets that are more likely to belong to the attended source

might be represented more strongly, without yet being ascribed to one of the sources

exclusively.

One discrepancy in previous studies using extra- and intracranial recordings is that the for-

mer were unable to detect any early effects of selective attention [7,16], whereas the latter

showed a small but consistent enhancement of feature representations associated with the

attended acoustic source signal [8]. Furthermore, an early effect of attention would also be

expected based on animal models that show task-dependent modulations of A1 responses

[47,48]. Our results show that this discrepancy may depend, in part, on which acoustic features

are analyzed: While overt acoustic onsets were not associated with an effect of selective atten-

tion, masked onsets were.

Overall, the early difference between the attended and ignored source suggests that acoustic

information from the ignored source is represented to a lesser degree than information from

the attended source. This is consistent with evidence from psychophysics suggesting that audi-

tory representations of background speech are not as fully elaborated as those of the attended

foreground [49]. More generally, it is consistent with results that suggest an influence of atten-

tion early on in auditory stream formation [50].

Stages of speech segregation through selective attention

Regardless of whether listening to a single talker or 2 concurrent talkers, response functions to

acoustic onsets are characterized by a prominent positive–negative 2 peak structure. Brain

responses to 2 concurrent talkers allow separating these response functions into components

related to different representations and thus reveal different processing stages. Fig 5 presents a

plausible model incorporating these new findings. Early on, the response is dominated by a

representation of the acoustic mixture, with a preliminary segregation, possibly implemented

through spectral filters [8]. This is followed by restoration of speech features that are masked

in the mixture, regardless of speaker, but with a small effect of selective attention, suggesting a
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more active mechanism. Finally, later responses are dominated by selective attention, suggest-

ing a clearly separated representation of the attended speaker as would be expected in success-

ful streaming.

An open question concerns how the overt and masked feature representations are tempo-

rally integrated. Representations of masked onsets were consistently delayed compared with

those of overt onsets by approximately 20 milliseconds (see Fig 4D). This latency difference

entails that upstream speech processing mechanisms may receive different packages of infor-

mation about the attended speech source with some temporal desynchronization. Although

this might imply a need for a higher order corrective mechanism, it is also possible that

upstream mechanisms are tolerant to this small temporal distortion. A misalignment of 20 mil-

liseconds is small compared with the normal temporal variability encountered in speech

(although phonetic contrasts do exist where a distortion of a few tens of milliseconds would be

relevant). Indeed, in audio-visual speech perception, temporal misalignment up to 100 milli-

seconds between auditory and visual input can be tolerated [51].

Broadly, the new results are consistent with previous findings that early cortical responses

are dominated by the acoustic mixture, rather than receiving presegregated representations of

the individual streams [7,8]. However, the new results do show evidence of an earlier, partial

segregation, in the form of representations of acoustic onsets, which are segregated from the

mixture, though not grouped into separate streams. Because these early representations do not

strictly distinguish between the attended and the ignored speaker, they likely play the role of

an intermediate step in extracting the information needed to selectively attend to one of the 2

speakers. Overall, these results are highly consistent with object-based models of auditory

attention, in which perception depends on an interplay between bottom-up analysis and for-

mation of local structure, and top-down selection and global grouping, or streaming [14,52].

Fig 5. Model of onset-based stream segregation. A model of cortical processing stages compatible with the results reported here. Left: The auditory

scene, with additive mixture of the waveforms from the attended and the ignored speakers (red and blue, respectively). Right: Illustration of cortical

representations at different processing stages. Passive filtering: At an early stage, onsets are extracted from the acoustic mixture and representations are

partially segregated, possibly based on frequency. This stage corresponds to the early positive peak in onset TRFs. Active Restoration: A subsequent stage

also includes representations of onsets in the underlying speech sources that are masked in the mixture, corresponding to the first peak in TRFs to

masked onsets. At this stage, a small effect of attention suggests a preliminary selection of onsets with a larger likelihood of belonging to the attended

speaker. Streaming: Finally, at a third stage, the response to onsets from the ignored speaker is suppressed, suggesting that now the 2 sources are clearly

segregated (see also [8]). This stage corresponds to the second, negative peak, which is present in TRFs to mixture and attended onsets but not to ignored

onsets. TRF, temporal response function.

https://doi.org/10.1371/journal.pbio.3000883.g005
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Implications for processing of “ignored” acoustic sources

The interference in speech perception from a second talker can be very different from the

interference caused by nonspeech sounds. For instance, music is cortically segregated from

speech even when both signals are unattended, consistent with a more automatic segregation,

possibly due to distinctive differences in acoustic signal properties [22]. In contrast, at moder-

ate SNRs, a second talker causes much more interference with speech perception than a com-

parable nonspeech masker. Interestingly, this interference manifests not just in the inability to

hear attended words but in intrusions of words from the ignored talker [53]. The latter fact, in

particular, has been interpreted as evidence that ignored speech might be segregated and pro-

cessed to a relatively high level. On the other hand, listeners seem to be unable to process

words in more than 1 speech source at a time, even when the sources are spatially separated

[54]. Furthermore, demonstrations of lexical processing of ignored speech are rare and usually

associated with specific perceptual conditions such as dichotic presentation [55]. Consistent

with this, recent EEG/MEG evidence suggests that unattended speech is not processed in a

time-locked fashion at the lexical [12] or semantic [13] level. The results described here, show-

ing systematic recovery of acoustic features from the ignored speech source, suggest a potential

explanation for the increased interference from speech compared with other maskers. Repre-

senting onsets in 2 speech sources could be expected to increase cognitive load compared with

detecting onsets of a single source in stationary noise. These representations of ignored speech

might also act as bottom-up cues and cause the tendency for intrusions from the ignored

talker. They might even explain why a salient and overlearned word, such as one’s own name

[56], might sometimes capture attention, which could happen based on acoustic rather than

lexical analysis [57]. Finally, at very low SNRs, the behavioral pattern can invert, and a back-

ground talker can be associated with better performance than stationary noise maskers [53]. In

such conditions, there might be a benefit of being able to segregate the ignored speech source

and use this information strategically [21].

An open question is how the auditory system deals with the presence of multiple back-

ground speakers. When there are multiple background speakers, does the auditory system

attempt to unmask the different speakers all separately, or are they represented as a unified

background [7]? An attempt to isolate speech features even from multiple background talkers

might contribute to the overly detrimental effect of babble noise with a small number of talkers

[58].

Limitations

Many of the conclusions drawn here rest on the suitability of the auditory model used to pre-

dict neural responses. The gammatone and onset models are designed to reflect generalized

cochlear and neural processing strategies and were chosen as more physiologically realistic

models than engineering-inspired alternatives such as envelope and half-wave rectified deriva-

tive models. Yet they might also be missing critical aspects of truly physiological representa-

tions. An important consideration for future research is thus to extend the class of models of

lower level auditory processing and how they relate to the large-scale neural population activity

as measured by EEG/MEG.

In addition, our model incorporates the masking of acoustic features as a binary distinction,

by splitting features into overt and masked features. In reality, features can be masked to

degrees. In our model, intermediate degrees of maskedness would result in intermediate values

in both predictors and thus, in a linear superposition of 2 responses. We would expect that a

model that could take into account the degree of maskedness as continuous variable would

likely provide a better fit to the neural data.
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Conclusions

How do listeners succeed in selectively listening to one of 2 concurrent talkers? Our results

suggest that active recovery of acoustic onsets plays a critical role. Early responses in the audi-

tory cortex represent not only overt acoustic onsets but also reconstruct acoustic onsets in the

speech sources that are masked in the mixture, even if they originate from the ignored speech

source. This suggests that early responses, in addition to representing a spectrotemporal

decomposition of the mixture, actively reconstruct acoustic features that could originate from

either speech source. Consequently, these early responses make comparatively complex acous-

tic features from both speech sources available for downstream processes, thus enabling both

selective attention and bottom-up effects of salience and interference.

Materials and methods

Participants

The data analyzed here have been previously used in an unrelated analysis [12] and can be

retrieved from the Digital Repository at the University of Maryland (see Data Availability).

MEG responses were recorded from 28 native speakers of English, recruited by media adver-

tisements from the Baltimore area. Participants with medical, psychiatric, or neurological ill-

nesses, head injury, and substance dependence or abuse were excluded. Data from 2

participants were excluded, one due to corrupted localizer measurements and one due to

excessive magnetic artifacts associated with dental work, resulting in a final sample of 18 male

and 8 female participants with mean age 45.2 (range 22–61).

Ethics statement

All participants provided written informed consent in accordance with the University of

Maryland Baltimore Institutional Review Board and were paid for their participation.

Stimuli

Two chapters were selected from an audiobook recording of A Child’s History of England by

Charles Dickens, one chapter read by a male and one by a female speaker (https://librivox.org/

a-childs-history-of-england-by-charles-dickens/, chapters 3 and 8, respectively). Four 1-min-

ute long segments were extracted from each chapter (referred to as male-1 through 4 and

female 1 through 4). Pauses longer than 300 milliseconds were shortened to an interval ran-

domly chosen between 250 and 300 milliseconds, and loudness was matched perceptually

(such that either speaker was deemed equally easy to attend to). Two-talker stimuli were gener-

ated by additively combining 2 segments, one from each speaker, with an initial 1-second

period containing only the to-be attended speaker (mix-1 through 4 were constructed by mix-

ing male-1 and female-1, through 4).

Procedure

During MEG data acquisition, participants lay supine and were instructed to keep their eyes

closed to minimize ocular artifacts and head movement. Stimuli were delivered through foam

pad earphones inserted into the ear canal at a comfortably loud listening level, approximately

70 dB SPL.

Participants listened 4 times to mix-1 while attending to one speaker and ignoring the other

(which speaker they attended to was counterbalanced across participants), then 4 times to

mix-2 while attending to the other speaker. After each segment, participants answered a ques-

tion relating to the content of the attended stimulus. Then, the 4 segments just heard were all
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presented once each, as single talkers. The same procedure was repeated for stimulus segments

3 and 4.

Data acquisition and preprocessing

Brain responses were recorded with a 157 axial gradiometer whole head MEG system (KIT,

Kanazawa, Japan) inside a magnetically shielded room (Vacuumschmelze GmbH & Co. KG,

Hanau, Germany) at the University of Maryland, College Park. Sensors (15.5-mm diameter)

are uniformly distributed inside a liquid-He dewar, spaced approximately 25 mm apart, and

configured as first-order axial gradiometers with 50 mm separation and sensitivity better than

5 fT�Hz-1/2 in the white-noise region (> 1 KHz). Data were recorded with an online 200-Hz

low-pass filter and a 60-Hz notch filter at a sampling rate of 1 kHz.

Recordings were preprocessed using mne-python (https://github.com/mne-tools/mne-

python) [59]. Flat channels were automatically detected and excluded. Extraneous artifacts

were removed with temporal signal space separation [60]. Data were filtered between 1 and 40

Hz with a zero-phase FIR filter (mne-python 0.15 default settings). Extended infomax inde-

pendent component analysis [61] was then used to remove ocular and cardiac artifacts.

Responses time-locked to the onset of the speech stimuli were extracted and resampled to 100

Hz. For responses to the 2-talker mixture, the first second of data, in which only the to-be

attended talker was heard, was discarded.

Five marker coils attached to participants’ head served to localize the head position with

respect to the MEG sensors. Two measurements, one at the beginning and one at the end of

the recording, were averaged. The FreeSurfer (https://surfer.nmr.mgh.harvard.edu) [62]

‘‘fsaverage” template brain was coregistered to each participant’s digitized head shape (Polhe-

mus 3SPACE FASTRAK) using rotation, translation, and uniform scaling. A source space was

generated using 4-fold icosahedral subdivision of the white matter surface, with source dipoles

oriented perpendicularly to the cortical surface. Minimum ℓ2 norm current estimates [63,64]

were computed for all data. Initial analysis was performed on the whole brain as identified by

the FreeSurfer “cortex” label. Subsequent analyses were restricted to sources in the STG and

Heschl’s gyrus as identified in the ‘‘aparc” parcellation [65].

Predictor variables

Predictor variables were based on gammatone spectrograms sampled at 256 frequencies, rang-

ing from 20 to 5,000 Hz in ERB space [66], resampled to 1 kHz and scaled with exponent 0.6

[67].

Acoustic onset representations were computed by applying an auditory edge detection

model [19] independently to each frequency band of the spectrogram. The model was imple-

mented with a delay layer with 10 delays ranging from τ2 = 3 to 5 milliseconds, a saturation

scaling factor of C = 30, and a receptive field based on the derivative of a Gaussian window

with SD = 2 input delay units. Negative values in the resulting onset spectrogram were set to 0.

We initially explored using higher levels of saturation (smaller values for C) but found that the

resulting stimulus representations emphasized nonspeech features during pauses more than

features relevant to speech processing, because responses quickly saturated during ongoing

speech. We chose the given, narrow range of τ2 to allow for a wider possibility of models

because a wider range of τ2 would only lead to smoother representations, although smoothing

can also achieved by the TRF model fitted to the neural data.

Onset representations of the 2 speakers were split into masked and overt onsets using ele-

ment-wise operations on the onset spectrograms. Masked onsets were defined by the extent to
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which onsets were larger in the source than in the mixture:

omasked ¼ maxðosource � omixture; 0Þ

Overt onsets were onsets that were not masked, i.e., speech source onsets that were also visi-

ble in the mixture:

oovert ¼ osource � omasked � minðosource; omixtureÞ

Using this procedure, approximately 67% of total onset magnitudes (ℓ1 norm) was assigned

to overt onsets and 33% to masked onsets.

For model estimation, envelope and onset spectrograms were then binned into 8 frequency

bands equally spaced in ERB space (omitting frequencies below 100 Hz because the female

speaker had little power below that frequency) and resampled to match the MEG data. As part

of the reverse correlation procedure, each predictor time series (i.e., each frequency bin) was

scaled by its ℓ1 norm over time.

For testing an intensity-based nonlinear response (see “Delayed response to masked onsets”),

the onset predictor was split into 3 separate predictors, one for each of 3 intensity levels. For each

of the 8 frequency bins, individual onsets were identified as contiguous nonzero elements; Each

onset was assigned an intensity based on the sum of its elements, and the onsets were then assigned

to one of 3 predictors based on intensity tertiles (calculated separately for each band). This resulted

in three 8-band onset spectrograms modeling low-, medium-, and high-intensity onsets.

Reverse correlation

STRFs were computed independently for each virtual current source [see 68]. The neural

response at time t, yt, was predicted from the sum of N predictor variables xn convolved with a

corresponding response function hn of length T:

ŷt ¼
XN

n

XT

t

hn;t � xn;t� t

STRFs were generated from a basis of 50-millisecond-wide Hamming windows and were

estimated using an iterative coordinate descent algorithm [69] to minimize the ℓ1 error.

For model evaluation, left-out data were predicted using 4-fold cross-validation. Folds were

created by assigning successive trials to the different folds in order (1, 2, 3, 4, 1, 2, . . .). In an

outer loop, the responses in each fold were predicted with STRFs estimated from the remaining

3 folds. These predictions, combined, served to calculate the correlation between measured and

predicted responses used for model tests. In an inner loop, each of the 3 estimation folds was, in

turn, used as validation set for STRFs trained on the 2 remaining folds. STRFs were iteratively

improved based on the maximum error reduction in the training set (the steepest coordinate

descent) and validated in the validation set. Whenever a predictor time series (i.e., one spectro-

gram bin) would have caused an increasing in the error in the validation set, the kernel for this

predictor was frozen, continuing until all predictors were frozen (see [70] for further details).

The 3 STRFs from the inner loop were averaged to predict responses in the left-out testing data.

Model tests

Each spectrogram comprising 8 time series (frequency bins) was treated as an individual pre-

dictor. Speech in quiet was modeled using the (envelope) spectrogram and acoustic onsets:

MEG � oþ e
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where o = onsets and e = envelope. Models were estimated with STRFs with T = [0,. . .,500)

millisecond. Model quality was quantified through the Pearson correlation r between actual

and predicted responses. The peak of the averaged r-map was 0.143 in the single-speaker con-

dition and 0.158 in the 2-talker condition (0.162 when the model incorporated masking).

Because single-trial MEG responses contain a relatively high proportion of spontaneous and

nonneural (and hence unexplainable) signals, the analysis focused on differences between

models that are reliable across participants, rather than absolute r-values. Each model was thus

associated with a map of Fisher z-scored r-values, smoothed with a Gaussian kernel (SD = 5

mm). In order to test the predictive power of each predictor, a corresponding null model was

generated by removing that predictor. For each predictor, the model quality of the full model

was compared with the model quality of the corresponding null model using a mass-univariate

related measures t-test with threshold-free cluster enhancement [71] and a null distribution

based on 10,000 permutations. This procedure results in a map of p-values across the tested

area, corrected for multiple comparisons based on the nonparametric null-distribution ([70]

for further details). For each model comparison, we report the smallest p-value across the

tested area, as an indicator of whether the given model significantly explains any neural data.

In addition, for effect size comparison, we report tmax for each comparison, the largest t-value

in the significant (p� 0.05) area. For single-talker speech (Fig 2), this test included the whole

cortex (as labeled by FreeSurfer). For subsequent tests of the 2-talker condition, the same tests

were used, but the test area was restricted to the auditory ROI comprising the STG and trans-

verse temporal gyrus in each hemisphere.

Initially, responses to speech in noise (Fig 3) were predicted from:

MEG � omix þ oatt þ oign þ emix þ eatt þ eign

wheremix = mixture, att = attended, and ign = ignored. Masked onsets (Fig 4) were analyzed

with the following:

MEG � omix þ oatt;overt þ oatt;masked þ oign;overt þ oign;masked þ emix þ eatt þ eign

In order to test for a level-dependent nonlinear response to onsets in the mixture, this

model was compared with the following:

MEG � omix� low þ omix� mid þ omix� high þ oatt;overt þ oatt;masked þ emix þ eatt þ eign

wheremix-low, -mid, and -high = mixture low, mid, and high intensity. This model has the

same number of predictors but assumes no awareness of onsets in the ignored speaker.

STRF analysis

To evaluate STRFs, the corresponding model was refit with T = [−100,. . .,500) milliseconds to

include an estimate of baseline activity (because of occasional edge artifacts, STRFs are dis-

played between −50 to 450 milliseconds). Using the same 4-fold split of the data as for model

fits, 4 STRF estimates were averaged, each using 1 fold of the data for validation and the

remaining 3 for training. Because predictors and responses were ℓ1 normalized for the reverse

correlation, and STRFs were analyzed in this normalized space, STRFs provide an SNR-like

measure of response strength at different latencies for each subject.

Auditory STRFs were computed for each subject and hemisphere as a weighted sum of

STRFs in the auditory ROI encompassing the STG and transverse temporal (Heschl’s) gyrus.

Weights were computed separately for each subject and hemisphere. First, each source point

was assigned a vector with direction orthogonal to the cortical surface and length equal to the

total TRF power for responses to clean speech (sum of squares over time, frequency, and
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predictor). The ROI direction was then determined as the first principal component of these

vectors, with the sign adjusted to be positive on the inferior–superior axis. A weight was then

assigned to each source as the dot product of this direction with the source’s direction, and

these weights were normalized within the ROI.

In order to make STRFs more comparable across subjects, they were smoothed on the fre-

quency axis with a Hamming window of width 7 bins. STRFs were statistically analyzed in the

time range [0,. . .,450) milliseconds using mass-univariate t-tests and ANOVAs, with p-values

calculated from null distributions based on the maximum statistic (t, F) in 10,000 permuta-

tions [72].

For visualization and peak analysis, STRFs were upsampled to 500 Hz. Peak latencies were

computed by first averaging auditory STRFs along the frequency axis and then finding the

largest or smallest value in each subject’s TRF in a window of [20, 200) milliseconds for single-

speaker and stream-based analysis (Figs 2 and 3) or [20, 250) milliseconds for the masked

onset analysis (Fig 4). Reported peak latencies are always average latencies across subject.

Supporting information

S1 Simulations. Simulations to assess TRF cross-contamination. TRF, temporal response

function.

(PDF)

S1 Fig. MEG responses to clean speech, envelope only. Spectrotemporal response function to

the envelope spectrogram, when estimated without considering onsets. All other details are

analogous to Fig 2E. Data in S4 Data.

(PDF)

S1 Data. Data from Fig 2. Model prediction accuracy maps and spectrotemporal response

functions for plots shown in Fig 2. Data are stored as pickled Python/Eelbrain objects with cor-

responding meta-data.

(ZIP)

S2 Data. Data from Fig 3. Details as S1 Data.

(ZIP)

S3 Data. Data from Fig 4. Details as S1 Data.

(ZIP)

S4 Data. Data from S1 Fig. Details as S1 Data.

(ZIP)

S5 Data. Data from S1 Simulation. Details as S1 Data.

(ZIP)
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63. Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum norm estimates. Med

Biol Eng Comput. 1994; 32:35–42. https://doi.org/10.1007/BF02512476 PMID: 8182960

64. Dale AM, Sereno MI. Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI

Cortical Surface Reconstruction: A Linear Approach. J Cogn Neurosci. 1993; 5:162–176. https://doi.

org/10.1162/jocn.1993.5.2.162 PMID: 23972151

65. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling

system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

NeuroImage. 2006; 31:968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021 PMID: 16530430

66. Heeris J. Gammatone Filterbank Toolkit [Internet]. 2018. [cited 2020 Oct 14]. Available from: https://

github.com/detly/gammatone

67. Biesmans W, Das N, Francart T, Bertrand A. Auditory-Inspired Speech Envelope Extraction Methods

for Improved EEG-Based Auditory Attention Detection in a Cocktail Party Scenario. IEEE Trans Neural

Syst Rehabil Eng. 2017; 25:402–412. https://doi.org/10.1109/TNSRE.2016.2571900 PMID: 27244743

68. Brodbeck C, Presacco A, Simon JZ. Neural source dynamics of brain responses to continuous stimuli:

Speech processing from acoustics to comprehension. NeuroImage. 2018; 172:162–174. https://doi.

org/10.1016/j.neuroimage.2018.01.042 PMID: 29366698

69. David SV, Mesgarani N, Shamma SA. Estimating sparse spectro-temporal receptive fields with natural

stimuli. Netw Comput Neural Syst. 2007; 18:191–212. https://doi.org/10.1080/09548980701609235

PMID: 17852750

70. Brodbeck C, Das P, Brooks TL, Reddigari S. Eelbrain 0.31 [Internet]. Zenodo; 2019. [cited 2020 Oct

14]. https://doi.org/10.5281/ZENODO.3564850

71. Smith SM, Nichols TE. Threshold-free cluster enhancement: Addressing problems of smoothing,

threshold dependence and localisation in cluster inference. NeuroImage. 2009; 44:83–98. https://doi.

org/10.1016/j.neuroimage.2008.03.061 PMID: 18501637

72. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods.

2007; 164:177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024 PMID: 17517438

PLOS BIOLOGY Neural speech restoration at the cocktail party

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000883 October 22, 2020 22 / 22

https://doi.org/10.1037//0278-7393.21.1.255
https://doi.org/10.1037//0278-7393.21.1.255
http://www.ncbi.nlm.nih.gov/pubmed/7876773
https://doi.org/10.1073/pnas.1801614115
http://www.ncbi.nlm.nih.gov/pubmed/29563229
https://doi.org/10.1121/1.2062650
http://www.ncbi.nlm.nih.gov/pubmed/16334654
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
http://www.ncbi.nlm.nih.gov/pubmed/24161808
https://doi.org/10.1088/0031-9155/51/7/008
http://www.ncbi.nlm.nih.gov/pubmed/16552102
https://doi.org/10.1162/neco.1995.7.6.1129
http://www.ncbi.nlm.nih.gov/pubmed/7584893
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
https://doi.org/10.1007/BF02512476
http://www.ncbi.nlm.nih.gov/pubmed/8182960
https://doi.org/10.1162/jocn.1993.5.2.162
https://doi.org/10.1162/jocn.1993.5.2.162
http://www.ncbi.nlm.nih.gov/pubmed/23972151
https://doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
https://github.com/detly/gammatone
https://github.com/detly/gammatone
https://doi.org/10.1109/TNSRE.2016.2571900
http://www.ncbi.nlm.nih.gov/pubmed/27244743
https://doi.org/10.1016/j.neuroimage.2018.01.042
https://doi.org/10.1016/j.neuroimage.2018.01.042
http://www.ncbi.nlm.nih.gov/pubmed/29366698
https://doi.org/10.1080/09548980701609235
http://www.ncbi.nlm.nih.gov/pubmed/17852750
https://doi.org/10.5281/ZENODO.3564850
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1016/j.neuroimage.2008.03.061
http://www.ncbi.nlm.nih.gov/pubmed/18501637
https://doi.org/10.1016/j.jneumeth.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517438
https://doi.org/10.1371/journal.pbio.3000883

