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Abstract

Mathematical ability is heritable and related to several genes expressing proteins in the

brain. It is unknown, however, which intermediate neural phenotypes could explain how

these genes relate to mathematical ability. Here, we examined genetic effects on cerebral

cortical volume of 3–6-year-old children without mathematical training to predict mathemati-

cal ability in school at 7–9 years of age. To this end, we followed an exploration sample (n =

101) and an independent replication sample (n = 77). We found that ROBO1, a gene known

to regulate prenatal growth of cerebral cortical layers, is associated with the volume of the

right parietal cortex, a key region for quantity representation. Individual volume differences

in this region predicted up to a fifth of the behavioral variance in mathematical ability. Our

findings indicate that a fundamental genetic component of the quantity processing system is

rooted in the early development of the parietal cortex.

Introduction

Mathematical ability is shaped by a complex interplay between genetic and environmental fac-

tors, in which genetic variance explains about 60% of the behavioral variance [1]. Building on

this evidence, several DNA variants have been found to be associated with mathematical per-

formance, including RP11-815M8.1, FLJ20160, ROBO1, FAM43A/LSG1, SFT2D1, DLD,

NRCAM, NUAK1, C14orf64, and GRIK1 [2–5]. Many of these variants are located on genes

that also express proteins in nerve cell tissue [6]. Little is known, however, about how expres-

sion patterns of math-related genes are distributed over the developing human brain (www.

brainspan.org). Accordingly, it is an open question how the developing brain as an intermedi-

ate phenotype might bridge the gap from genetic variability to mathematical ability.

Mathematical cognition draws on diverse, dynamically interacting neural systems [7].

Beyond visual and/or auditory machinery, essential processing resources are provided by

attention and execution systems of the prefrontal cortex, a premotor short-term memory
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rehearsal mechanism, a long-term memory storage unit in the medial temporal lobe, and,

most specifically, the parietal cortex, which builds visuospatial quantity representations [7–

11]. All these anatomically broadly distributed systems could thus be related to previously

reported genes linked to mathematical ability.

The aim of the present study was to explore associations between known math candidate

genes and brain structure in young children that had not yet received math instruction. Fur-

thermore, we investigated longitudinally whether these associations would predict mathemati-

cal performance in school. Targeting a structural magnetic resonance imaging measure (i.e.,

grey matter volume) was motivated by the currently available neurobiological data for math

candidate genes. These data provide converging evidence that math-related genes play a role

for grey matter growth, in particular synapse formation, intracortical axon branching, and

neuronal migration [12–14]. Importantly, the rationale behind focusing on an initially

unschooled sample was to capture potential neurobiological predispositions, not conse-

quences, of individual mathematical learning success.

As a first step of our analysis, we selected 18 single nucleotide polymorphisms (SNPs) on 10

genes previously found to be significantly associated with mathematical performance. Associations

between these SNPs and grey matter volume were then calculated at the whole-brain level in an

exploration sample (n = 101) and, guided by power analyses, in an independent replication sample

(n = 77) of 3–6-year-old children. To this end, we used a multivariate statistical model quantifying

joint effects of SNPs located in the same gene. Specifically, we quantified the associations among all

SNPs and then related the resulting covariance matrix to the MRI data matrix. We did not apply a

predefined coefficient-of-determination or p-value threshold to preselect particular SNPs. This

approach has been shown to detect biologically valid dependencies between SNPs and to increase

statistical power compared to classical univariate approaches [15]. Finally, within the volumetric

clusters obtained from the genetic association model, we ran multivariate searchlight analyses to

decode voxels that are related to individual math test scores in second grade (7–9 years of age).

Following the current state of knowledge about neural systems contributing to mathemati-

cal cognition, we hypothesized that significant association and prediction effects could be

expected in prefrontal, premotor, medial temporal, and inferior parietal cortices.

Results

Descriptive participant data

Genotypes and structural brain scans were acquired at 3–6 years in an exploration sample

(n = 101) and a replication sample (n = 77). Standardized age-normed test scores of mathemat-

ical ability collected at 7–9 years were available for n = 84 out of 101 children in the exploration

sample and for n = 75 out of 77 children in the replication sample. Demographic features and

behavioral test performance did not differ significantly between those children that completed

both waves of data collection and those children that dropped out after the first wave of data

collection (exploration sample: all z< 2, all χ< 1, all P> 0.05; replication sample: all z< 2, all

χ< 1, all P> 0.05). Sample characteristics based on complete datasets are specified in Table 1.

Associations between math candidate genes and grey matter volume at age

3–6 years

In the exploration sample, a significant association at a threshold of P< 0.05 (family-wise-

error-corrected for the number of voxels and genes tested) was detected for the gene ROBO1
(max. R2 = 0.47) (Fig 1A), but none of the other nine genes tested (Table 2). The achieved

power to detect this large effect was 0.94. The sample size needed to replicate this effect with a
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power of 0.8 was n = 71. Accordingly, in an independent sample of n = 77, the association

effect of ROBO1 was replicated testing the same set of genes (Table 2) at the same statistical

threshold (max. R2 = 0.43) (Fig 1A). The effects of age, sex, handedness, and total intracranial

volume were controlled in the models.

Associations at the whole-brain level were considered significant when local clusters

remained under an arbitrarily defined height threshold of P< 0.05 (family-wise-error-corrected

for the number of voxels and genes tested) and exceeded an arbitrary extent threshold of

k> 100 voxels. In the exploration sample, the effect of ROBO1 was localized in the right parietal

cortex encompassing the dorsal lip of the intraparietal sulcus extending into the adjacent gyrus

of the ventral superior parietal lobule (peak MNI coordinates: +45–33 +57; k = 437 voxels) (Fig

1B). No other areas exceeded a spatial extent threshold of k = 100 voxels. In the replication sam-

ple, the effect of ROBO1 was also localized in the right parietal cortex (peak MNI coordinates:

+49–41 +55; k = 304 voxels) where both clusters overlapped (Fig 1C and 1D).

Prediction of math performance at age 7–9 years from parietal grey matter

volume at age 3–6 years

Individual grey matter volume within the right parietal cluster that was associated with

ROBO1 at 3–6 years of age was significantly associated with individual scores in a comprehen-

sive behavioral math test taken at 7–9 years of age. Associations were significant at a threshold

of P< 0.05 (permutation test corrected for the number of voxels tested) in the exploration

sample (max. R2 = 0.10) (Fig 2A) and the replication sample (max. R2 = 0.22) (Fig 2B) in an

overlapping part of the right parietal cortex (Fig 2C). Additional separate brain-behavior asso-

ciation analyses revealed no evidence for a dissociation between numeracy and calculation

skills in the exploration sample (z = 0.23, P = 0.410) and the replication sample (z = 0.40,

P = 0.343). The effects of age, sex, handedness, total intracranial volume, maternal education,

and nonverbal IQ were controlled in the models.

Discussion

In this study, we explored associations between 18 SNPs on 10 math candidate genes and

whole-brain grey matter volume in an exploration sample of 101 and a replication sample of

Table 1. Demographic information and behavioral test performance.

Exploration sample Replication sample Comparison

Age1 (mean ± SD2, min–max) 4.88 ± 0.98, 3.08–6.17 4.04 ± 0.56, 3.16–5.08 z = 10.95, P < 0.0016

Sex (male/female) 46/38 38/39 χ(1) = 0.27, P = 0.6027

Handedness (right, left, ambidextrous) 78, 3, 3 72, 0, 5 χ(1) = 141.94, P < 0.0017

Total intracranial volume3 (mean ± SD, min–max) 1453 ± 128, 1083–1772 1438 ± 112, 1060–1733 z = 0.85, P = 0.3986

Maternal education4 (mean ± SD, min–max) 4.42 ± 1.25, 2–7 4.87 ± 1.19, 3–6 z = 2.38, P = 0.0176

Nonverbal IQ (mean ± SD, min–max) 103 ± 15, 70–139 101 ± 11, 77–126 z = 0.84, P = 0.4026

Mathematical ability5 (mean ± SD, min–max) 58 ± 32, 1–100 57 ± 28, 2–100 z = 1.04, P = 0.2976

1Age in years at which children underwent structural magnetic resonance imaging
2Standard deviation
3in cm3

40–7 Likert scale (see Methods for details)
5Percentile ranks
6Mann–Whitney U tests
7Pearson χ2 tests

https://doi.org/10.1371/journal.pbio.3000871.t001
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77 unschooled children aged 3–6 years. We observed that the gene ROBO1 was significantly

associated with grey matter volume in dorsal parts of the right intraparietal sulcus and ventral

parts of the right superior parietal lobule. Grey matter volume patterns within these regions

revealed significant associations with math test scores at 7–9 years of age in second grade.

Role of ROBO1 for grey matter development

The reported link between ROBO1 and grey matter volume is supported by a large body of

molecular genetic literature suggesting that this gene plays a crucial role for prenatal growth of

the rodent neocortex. Specifically, there is converging evidence that ROBO1 regulates neuronal

migration (i.e., the positioning of neurons in cortical layers during intrauterine brain matura-

tion) [13, 16, 17]. Moreover, ROBO1 might also contribute to the proliferation of neurons in

the cortex [18].

Fig 1. Grey matter volume of the right parietal cortex of 3-6-year-old children without mathematical training is associated with the

cortical growth gene ROBO1. (A) Outer corner points depict 10 known math candidate genes and their corresponding numbered

chromosomes. Dashed lines depict R2 statistics quantifying the strength of associations between the genes and the grey matter volume

images. The further away a point is from the center, the stronger the association is. Orange points/lines refer to the exploration sample,

and blue points/lines refer to the replication sample. (B–D) Right sagittal view on a cortical surface projection of P-value images showing

the right parietal clusters that were significantly associated with ROBO1. Results are shown separately for the exploration sample (B), the

replication sample (C), and the overlap between both samples (D). The color bar indicates the range of P-values with a lower threshold of

P< 0.05 and an upper threshold of P< 0.01, family-wise-error-corrected for the number of voxels and genes tested. The numerical data

used in this figure are included in S1 Data.

https://doi.org/10.1371/journal.pbio.3000871.g001
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Table 2. Genotypic information.

SNP2 Participants per genotype4 Genotypes

Chrom1 Gene Proxy MAF3,4 HWE4,5 HoMa6 Het7 HoMi8 HoMa6 Het7 HoMi8

1 RP11-815M8.19 rs12130910

rs660467612
0.35

0.34

0.66

0.61

40

35

49

32

11

10

GG GA AA

2 FLJ2016010 rs12613365

rs381160913
0.28

0.25

0.22

0.55

50

44

46

27

5

6

GG TG TT

3 ROBO111 rs162870 0.38

0.34

0.67

0.45

15

7

44

38

38

32

CC AC AA

3 ROBO111 rs331142 0.26

0.26

0.29

0.37

58

44

34

26

9

7

TT GT GG

3 ROBO111 rs12495133 0.37

0.38

0.29

0.63

43

28

42

39

16

10

CC CA AA

3 ROBO111 rs11127636 0.42

0.44

0.21

0.65

20

16

41

36

36

25

CC AC AA

3 ROBO111 rs4535189 0.44

0.47

1

0.65

31

20

49

41

20

16

TT TC CC

3 ROBO111 rs7614913 0.44

0.31

0.54

0.79

34

37

46

32

21

8

TT TC CC

3 ROBO111 rs6548628 0.45

0.49

1

0.25

20

23

50

33

31

21

CC AC AA

3 ROBO111 rs9853895 0.50

0.40

0.32

0.48

28

14

45

34

28

29

TT CT CC

3 ROBO111 rs1995402 0.40

0.39

0.30

0.63

39

30

43

34

19

13

CC CA AA

3 FAM43A/LSG19 rs789859

rs467785414
0.41

0.40

0.1

0.47

40

26

40

41

21

10

GG TG TT

6 SFT2D19 rs4144887

rs414488612
0.18

0.27

0.3

1

70

41

26

31

5

5

CC CT TT

7 DLD10 rs6947045

rs88677415
0.41

0.40

0.41

1

38

27

44

38

19

12

GG GA AA

7 NRCAM10 rs2300052

rs1324524212
0.25

0.23

0.6

0.54

55

46

40

26

5

5

GG GA AA

12 NUAK110 rs1215603

rs291313216
0.41

0.40

0.3

0.48

32

29

54

34

14

14

CC TC TT

14 C14orf649 rs2809115

rs964613917
0.46

0.42

0.55

1

31

26

47

37

23

14

GG GA AA

21 GRIK110 rs363449

rs997841718
0.40

0.38

0.15

0.004

33

23

56

49

12

5

TT TC CC

1Chromosome
2Single nucleotide polymorphism
3Minor allele frequency
4First line: exploration sample, Second line: replication sample
5Hardy–Weinberg Equilibrium
6Homozygous major allele
7Heterozygous alleles
8Homozygous minor allele
9 [3]
10 [2]
11 [4]
12R2 = 1
13R2 = 0.98
14R2 = 0.58
15R2 = 0.86
16R2 = 0.99
17R2 = 0.88
18R2 = 0.95

https://doi.org/10.1371/journal.pbio.3000871.t002
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Human gene expression data collected ex vivo corroborate the neuroanatomical validity of

the effect that we detected here in vivo. This work demonstrates that the proteins encoded by

ROBO1 are consistently expressed in the parietal cortex of two 3-year-old and two 8-year-old

children (www.brainspan.org). Our results do not, however, allow us to draw any firm conclu-

sions about negative findings in other areas.

ROBO1, the parietal cortex, and mathematical ability

The current findings suggest that individual differences in right parietal cortex growth might

be an intermediate phenotype filling the explanatory gap in previously reported associations

between DNA variation and behavioral mathematical performance. This interpretation is

compatible with numerous studies showing that the parietal cortex specifically contributes to

mathematical cognition from childhood on and keeps this decisive role in adulthood [19, 20].

In particular, the intraparietal sulcus and the superior parietal lobule provide the neural

resources for quantity detection, which remains an essential basic component even for higher-

order mathematical problem solving [20].

Interestingly, nonsymbolic quantity processing skills typically emerge in the first months of

life without formal education and exhibit marked individual differences from the onset of

ontogeny [21]. Following the results of the present study, we generate the working hypothesis

that even these very early differences might already be explained by differences in right parietal

cortex volume, which are related to ROBO1 variability. Further experiments with infants are

needed to confirm this hypothesis.

Hemispheric specialization of the parietal cortex

In the adult brain, functional activation during mathematical processing is consistently seen in

bilateral parietal cortices [22, 23]. In contrast, and in line with our structural findings, children

more strongly recruit the right (compared to the left) parietal cortex when performing mathemat-

ical tasks, according to a recent meta-analysis [24]. A deeper understanding of this developmental

difference, which presumably disappears with further experience, remains as a future challenge.

Conclusion

Our study indicates that up to a fifth of variance in mathematical ability can be predicted from

early individual differences in right parietal cortex volume which is related to the cortical

Fig 2. ROBO1-associated grey matter volume of the right parietal cortex of 3–6-year-old children without mathematical training

predicts mathematical ability in school at 7–9 years of age. (A–C) Right sagittal view on a cortical surface projection of P-value images

showing voxels within parietal clusters that were significantly associated with ROBO1 at 3–6 years of age and with individual scores of a

mathematical ability test conducted at 7–9 years of age. Results are shown separately for the exploration sample (A), the replication

sample (B), and the overlap between both samples (C). The color bar indicates the range of P-values with a lower threshold of P< 0.05

and an upper threshold of P< 0.01 (voxel-wise permutation-corrected). The numerical data used in this figure are included in S2 Data.

https://doi.org/10.1371/journal.pbio.3000871.g002
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growth gene ROBO1. These results suggest that genetic variability might shape mathematical

ability by sculpting the early development of the brain’s basic quantity processing system.

Methods

Participants

Participants were recruited between 2012 and 2013, mainly from the Leipzig metropolitan

area but also from other parts of Germany. We incentivized families to take part in the study

by telling them that the current study would improve our understanding of the origins of

developmental learning disorders. All parents or guardians gave written informed consent and

all children gave verbal informed consent to participate. Participation was rewarded with a

“junior researcher diary” and a small educational gift for each child and a reimbursement for

the MRI scanning session (€15) and the behavioral assessment sessions (€7.50). The study was

approved by the Ethics Committee of the University of Leipzig, Germany (approval number

320-11-26092011). Participants were excluded from further analysis if they (A) had a history of

neurological and/or psychiatric disorders, (B) had hearing and/or vision disorders, (C) had

attention deficit hyperactivity disorder, (D) scored more than two standard deviations (SDs)

below the age average in a nonverbal IQ test and thus met a criterion for mental retardation,

(E) did not comply with the experimental procedures in a training session, and/or (F) moved

in the scanner so that data quality was compromised. Data were collected between 2012 and

2019. All of these procedures are in compliance with the relevant ethical regulations specified

in the Declaration of Helsinki.

Genotyping

DNA from saliva was extracted using standard procedures as described in [25] or using Ora-

gene DNA Genotek Kits (Kanata, Ontario, Canada). In the exploration sample, genotyping for

all SNPs but rs331142, rs12495133, and rs1995402 was performed with the bead chip Infinium

HumanCoreExome Psych Chip. Bead chip genotyping was carried out according to the manu-

facturer’s instructions and was analyzed using Illumina’s GenomeStudio Genotyping Module.

Variants rs331142, rs12495133, and rs1995402 were genotyped via matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry (iPLEX, Agena, Hamburg, Germany).

We observed a high concordance rate for additional SNPs genotyped with both technologies

(99.99%). In the replication sample, all variants were genotyped via matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry (iPLEX, Agena, Hamburg, Germany).

Genotyping data had to fulfill the following quality measures: SNP-wise exact Hardy–Wein-

berg Equilibrium (HWE) P> 0.05 [26], SNP-wise call rate> 95%, individual-wise call

rate> 90%, MAF >0.05, and 100% fit between genotypes of individuals that were measured in

duplicates. One variant (rs363449) with deviation from the HWE (p = 0.004) was included, as

there was no mismatch between genotyped Central European trios (Coriell Institute for Medi-

cal Research, Camden, New Jersey, United States of America) and the HapMap database

(https://www.ncbi.nlm.nih.gov/probe/docs/projhapmap/).

SNPs not directly covered by genotyping were substituted by an appropriate proxy reveal-

ing the highest linkages disequilibrium (R2) with the original SNP (Table 2) using 1000

Genomes version 1 phase 3 as reference panel [27]. It should be noted as a limitation that

rs4677854 cannot be considered as a good proxy for rs789859 given the R2 of 0.58.

Relatedness among the analyzed participants was assessed by analyzing kinship (IBS) mea-

sures between participants using R and GenABEL (28). We identified five siblings (expected

IBS = 0.5) using the conventional cutoff of 0.354 (the geometric mean of 0.5 and 0.25) and one

first-cousin pair (expected IBS = 0.125) using the conventional cutoff of 0.088 (calculated

PLOS BIOLOGY Neurogenetic origins of individual differences in mathematical ability

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000871 October 22, 2020 7 / 12

https://www.ncbi.nlm.nih.gov/probe/docs/projhapmap/
https://doi.org/10.1371/journal.pbio.3000871


accordingly), while the remaining participants were unrelated (IBS� 0.088). Accordingly, we

also ran the gene–brain association analysis without five siblings and one cousin. This reanaly-

sis reproduced the identical peak MNI coordinates (+45–33 +57) and statistics in all 437

voxels.

MRI data acquisition and preprocessing

T1-weighted three-dimensional magnetization-prepared rapid-acquisition gradient echo

(MP2RAGE) images [29] were acquired on a 3.0-Tesla Siemens TIM Trio whole-body mag-

netic resonance scanner using a 12-radiofrequency-channel head coil and the following

parameters: TR = 5,000 ms, TE = 2.82 ms, TI1 = 700 ms, TI2 = 2,500 ms, FOV = 256 x 240,

matrix size = 250 x 219 x 144 and voxel size = 1.3 x 1.3 x 1.3 mm3.

Image quality was assessed in a two-step procedure. In the first step, we made sure by visual

inspection that each image was free of artifacts and/or anatomical abnormalities. In the final

step, image quality was evaluated automatically quantifying noise and inhomogeneity using

the Computational Anatomy Toolbox (CAT) (http://dbm.neuro.uni-jena.de/cat) implemented

in the Statistical Parametric Mapping 12 (SPM 12) software (http://fil.ion.ucl.ac.uk/spm/).

Only images with a rating of at least 80 (indicating good quality) were retained for further

analysis.

Grey matter volume images were computed by running a voxel-based morphometry analy-

sis in CAT and SPM 12. To this end, we first created a customized multitissue probability map

(including grey matter, white matter, cerebrospinal fluid, bone, soft tissue, and air/back-

ground) with the Template-O-Matic Toolbox (https://irc.cchmc.org/software/tom.php) using

the dataset acquired during the NIH MRI study of normal brain development as the data basis.

This map matched the age and sex of the present sample and served as a prior to compute a

sample-specific template in Montreal Neurological Institute (MNI) space using the Diffeo-

morphic Anatomical Registration Through Exponentiated Lie Algebra algorithm. Next, we

normalized each individual T1-weighted image to the sample-specific template and segmented

it into grey matter, white matter, cerebrospinal fluid, dura, soft tissue, and air. Based on these

data, we were able to estimate the total intracranial volume. Grey matter volume images were

then calculated while modulating for nonlinear effects to preserve local volumetric values.

These images were finally smoothed with an 8-mm full-width at half-maximum Gaussian

kernel.

Maternal education data

Maternal education was assessed with a customized in-house questionnaire and defined as the

sum of school education and professional education. School education was quantified on a

scale from 0 to 3 (0 = no school graduation, 1 = graduation after 9 years (German “Hauptschu-

labschluss”), 2 = graduation after 10 years (German “Mittlere Reife”), 3 = high school gradua-

tion). Higher education was quantified on a scale from 0 to 4 (0 = no professional degree,

1 = vocational degree, 2 = university of applied sciences degree, 3 = college graduate, 4 = gradu-

ate degree). According to this scale, an index of 4.5 would represent an average maternal edu-

cation level. The mean index values of the current samples (exploration sample: 4.42,

replication sample: 4.87) thus indicate average maternal education levels ranging from poorly

educated to highly educated mothers (index values 2–7).

Behavioral testing

Handedness was measured with a customized in-house test, in which children were asked to

perform or simulate everyday activities with their hands so that we could calculate a laterality
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quotient (LQ). Right-handedness was defined as LQ > +48, left-handedness as LQ� –28, and

ambidexterity as –28 < LQ� +48.

The Perceptual Reasoning subscale of the Wechsler Intelligence Scale for Children (WIS-

C-IV) was used to derive a nonverbal IQ score (https://www.testzentrale.de/shop/wechsler-

intelligence-scale-for-children-deutsche-ausgabe-fourth-edition.html).

Mathematical ability was assessed using the Heidelberg Arithmetic Test (https://www.

testzentrale.de/shop/heidelberger-rechentest.html). This comprehensive test instrument con-

sists of 11 subtests covering addition, subtraction, multiplication, division, symbolic and non-

symbolic quantity comparison, quantity estimation, numerical sequencing, and counting.

Correct answers were added together and transformed into a percentile rank based on age

norms for three subscales: numeracy, calculation, and total mathematical ability.

Handedness and intelligence were assessed individually in a single session in a small child

laboratory room. Mathematical ability was assessed as a group test (max. 15 children) in a sep-

arate session in a larger seminar room. In each sample, these data were acquired by a maxi-

mum of three different research assistants that were thoroughly familiarized with the testing

procedure beforehand. Before collecting the data, each assistant passed three supervised prac-

tice sessions with children that were not enrolled in the current study.

Gene–brain association analysis

A multilocus model based on least-squares kernel machines was combined with conservative

voxel-wise statistical inference based on the random field theory to test for joint nonlinear

associations between 18 SNPs and multivariate patterns in grey matter volume images while

removing the linear effect of the covariates’ age, sex, handedness, and total intracranial volume

[15]. The resulting R2 statistic images were tested for significance using a permutation proce-

dure (running 10,000 permutations) based on parametric tail approximation and subsequently

transformed to P-value images [15]. Associations were considered significant when clusters

remained under an arbitrarily defined height threshold of P< 0.05 (family-wise-error-cor-

rected for the number of voxels and genes tested) and exceeded an arbitrary extent threshold

of k> 100 voxels. During the family-wise-error-correction, the statistical threshold of each

voxel was adjusted by (1) multiplying it with the total number of 408,965 voxels tested while

taking into account the effective smoothness of the signals and then (2) multiplying the result-

ing threshold of each voxel with the total number of 10 genes tested. These analyses were run

in Matlab (https://www.mathworks.com) and SPM 12.

Power analyses were conducted using the G�Power toolbox (http://www.gpower.hhu.de).

The achieved power was calculated post hoc using the statistical framework of a goodness of fit

test based on the observation that the multivariate model we applied produces an approximate

χ2 test statistic that can similarly be converted into a correlation coefficient and a p-value [15].

The input parameters of this power calculation were the effect size of Cohen’s w = 0.47, the

alpha error probability of 0.05, and the sample size of n = 101. The sample size needed to repli-

cate this effect with a power of 0.8 was calculated a priori also within the framework of a χ2

goodness of fit test using the effect size of Cohen’s w = 0.47, the alpha error probability of 0.05,

and the power level of 0.8 as the input parameters.

Brain–behavior association analysis

A searchlight-based multivariate pattern analysis approach was used to identify voxels that

were significantly associated with math test scores within the clusters derived from the genetic

association analyses. To this end, for each voxel within these clusters, we defined a spherical,

4-mm surrounding region (the searchlight) and performed support vector regression analyses
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for each possible searchlight position within a 10-fold cross validation design. Coefficients of

determination (R2) were assigned to each voxel at its center and nonparametrically assessed

for significance by running 10,000 permutations of the training and test data to yield a voxel-

wise null distribution. During the permutation-test correction for false positives, the observed

results were randomly resampled 10,000 times to build an empirical estimate of the null distri-

bution to draw the test statistic (coefficient of determination) from. Voxels were identified as

significant by counting the number of times the test statistic was smaller or greater than the

statistic value obtained from the permuted data sets and multiplying this value by the minimal

P-value of the permutation test (1/(n+1), n = 10,000). Effects of covariates of no interest,

including age, sex, handedness, total intracranial volume, maternal education level, and non-

verbal IQ were removed, based on a cross-validated confound regression method [30]. The

analyses were carried out using The Decoding Toolbox (https://sites.google.com/site/

tdtdecodingtoolbox/) and Matlab. Coefficients of determination of the separate brain-behavior

association analyses for numeracy and calculation skills were compared by running Meng’s z-

tests.
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