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ABSTRACT 
 

Most widely used integrated hydrologic models still describe the flow interaction between streams 
and aquifers using primitive early concepts. In the previous article the shortcomings of the 
methodology were shown in great details. In this second part means are presented by which 
improvements can be introduced into the procedures.  Accuracy and numerical efficiency will be 
improved. The article describes in details the proposed alternatives for both the saturated and the 
unsaturated connections. In the article reference is made specifically to the code MODFLOW.  
Most of the other integrated hydrologic models used for large-scale regional studies apply 
essentially the same methodology to estimate seepage.  
 

 
Keywords:  Seepage; saturated/unsaturated connection; combined analytical-numerical techniques; 

leakance coefficient. 
 
1. INTRODUCTION 
 
Large-scale hydrologic models such as 
MODFLOW [1] try to be as physically based as 
possible. Out of necessity these mathematical 

models must greatly simplify a complex          
reality and as a result they become highly 
conceptual.  However a proper conceptualization 
process should be done without violating basic 
physical processes. Part 1 has shown that, in 
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MODFLOW’s conceptualization for the 
estimation of seepage, some well-known 
physical principles were ignored.  In this article, 
Part 2, a methodology is introduced to improve 
the estimation of seepage under conditions of 
saturated or unsaturated hydraulic connection.  
Naturally still some simplifications were 
necessary, and unavoidable, but at least in the 
author’s opinion, no basic physical laws were 
violated.  

 
2.  PROPOSED COMBINED ANALYTICAL-

NUMERICAL ESTIMATION OF 
SEEPAGE UNDER A SATURATED 
CONNECTION 

 
Fig. 1 displays the flow pattern of saturated 
seepage from a rectangular cross-section of a 
river toward some distance away in the 
surrounding aquifer.  
 
It is clear in Fig. 1 that the average head in the 
aquifer cell is less than the river head, which in 
this case is 104 m.   The boundary condition at 
both ends of the region was a uniform head of 
103 m.  As the flow approaches the right and left 
sides of the system it tends to become 
horizontal. The question is: how to combine such 
analytical solution with an overall numerical code 
such as e.g. MODFLOW?  In the large-scale 
regional studies the water-table aquifer is treated 
as a single calculation layer, which means that 
the model is using the Dupuit-Forchheimer 
assumption that in the aquifer the head 
distribution in the vertical direction is hydrostatic.  
In other words the flow in that water-table aquifer 
is considered horizontal.  Yet it is clear from Fig. 
1 that the flow pattern in the vicinity of the river is 
not horizontal.  

 
The proposed solution is to treat the flow for what 
it is locally that is 2-dimensional in the vertical 
plane and reattach it at some distance away from 
the river bank to a 2-dimensional numerical 
solution in the horizontal plane.  To achieve that 
result one distinguishes the aquifer cell that 
contains the river, the “river cell”, from an 
adjacent neighboring cell as shown in Fig. 2. 
(There may or may not exist a clogging layer).  
The lateral grid size, G, is chosen, at a minimum, 
such that by the time the seepage flow from the 
river has reached the center of the right (or left) 
half of the river cell it has become horizontal.  
That way the Dupuit-Forchheimer assumption to 
calculate the flow between the river cell and the 
adjacent cell is legitimate. The analytical solution 

for the flow [2,3,4] as shown in Fig. 1, has 
demonstrated that horizontal flow will hold 
conservatively, in case of isotropy, at a minimum 
distance from the bank of the river equal to twice 

the aquifer thickness, Daq .   

 
(This distance of twice the aquifer thickness is 
quite excessive as a look at Fig. 1 shows quite 
clearly. In practice one can use shorter grid sizes 
than the one conservatively needed to determine 
the minimum grid size).  The seepage discharge 

from the river on one side, QS
onesided

 (say the 

left side) is given by the relation: 
 

 

QS
onesided  KHLRonesided (hS  hf )   (1) 

 

where KH
 is the aquifer hydraulic horizontal 

conductivity, LR is the river reach length, hS  is 

the head in the river and hf  is the average 

head in the aquifer river cell (i.e. the cell that 

contains the river).  onesided
 is the SAFE 

(Stream-Aquifer Flow Exchange) dimensionless 

conductance.  That onesided
 or simply   has 

been estimated exactly analytically.  It is a 
function of the normalized wetted perimeter of 
the river,  
 

Wp
N 

Wp

Daq

                                              (2)  

 

of the degree of penetration, 
H

Daq            

 (3)  

 

where H is the river stage, of the degree of 
anisotropy,  
 

ranis 
KV

KH                                               

(4)  

 
of the excess distance from the minimum 
standard far distance,  
 

 
G

4
 (2

Daq

ranis
 B)

                     

 (5)  
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which means that the minimum grid size must  
be 
 

 Gmin  8
Daq

ranis
 4B                         (6)  

 
and of the presence of a real clogging layer 
defined by its leakance coefficient,  
 

Lrcl 
Krcl
ercl

                                            (7)  

 

The symbol for   when all the effects of 
anisotropy, excess distance over the minimum 
standard far distance and presence of a real 
clogging layer are explicitly accounted is 

anisrcl  if necessary, though otherwise 

for brevity still labeled as . The total seepage 
discharge is thus:  
 

QS
safe  2LRKH(hS  hf )                 (8) 

 

On the other hand the MODFLOW equation is: 
 

QS
mod  LRWpLmod(hS  hf )            (9) 

 
If there is a tight streambed (clogging layer) 
MODFLOW proposes for the leakance coefficient 
the expression:  
 

K

M

Kcl
ecl

 Lmod                                  (10) 

 
However MODFLOW does not provide a 
procedure to estimate these clogging layer 
parameters except possibly through calibration. 
 
If there is no tight streambed within some limited 
conditions MODFLOW proposes:  
 

Lmod 
Kaq

1

KV
1

                              (11) 

 

Identification of Eq. (8) and (9) shows that as 
long as there is saturated connection, whether 
there is a tight streambed or not, the choice for 
MOFLOW should be: 
 

Lmod  Lsafe  2KH /Wp 
KH

BH
     (12) 

References [3,4] have provided all the 

information necessary to calculate in terms of 
the local conditions and the values of the 
parameters defining the system.  It requires only 
a few algebraic calculations [5,4].  
 
When using the leakance coefficient of Eq. (10) 
in the MODFLOW Eq. (9) for seepage discharge 

the river cell head used is hijk , that is the finite 

difference average value of head in the full river 
cell, which is precisely the average value of head 
in the half river cell and a very close 
approximation for the head at the center of the 
half river cell, which is the head needed for the 
validity of Eq. (9). 
 

3.  PROPOSED COMBINED ANALYTICAL-
NUMERICAL ESTIMATION OF 
SEEPAGE UNDER AN UNSATURATED 
CONNECTION 

 
This is a more complicated situation.  The 
complete physical system consists of a river, a 
clogging layer (riverbed), an unsaturated zone 
below, a capillary fringe, a water table mound, a 
river cell and an adjacent cell (Figs. 3 and 4).  
 

3.1 The Simplified Description of the 
Unsaturated Zone 

 
The goal is to describe approximately, simply but 
with sufficient accuracy, the transient flow 
exchange between surface water (river, canal or 
pond) and the underlying aquifer under an 
unsaturated connection. The riverbed acts as a 
clogging layer.  In the aquifer just below the 
clogging layer, the flow may be saturated or 
unsaturated. The word interface refers to the 
boundary between the bottom of the clogging 
layer and the top of the underlying aquifer, while 
we use the term capillary zone for the 
combination of both the unsaturated zone and 
the capillary fringe.  
 

The approach is to simplify the analysis of the 
unsaturated situation by approximating the shape 
of the water content profile in the unsaturated 
zone.  
 
The selected profile for the water content is the 
one that would convey the current seepage 
steadily and uniformly through the unsaturated 
zone.  
 
In this document the unsaturated relative 
conductivity and the capillary pressure functions 
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are characterized by the Brooks-Corey 
formulation as described in Appendix 1.  
 

For illustration, the parameter M=2.5 (power in 
the capillary pressure curve expressed as a 

function of normalized water content ) and p=5 
(power in the relative permeability curve 
expressed as a function of normalized water 
content) are chosen. 

 

 
 

Fig. 1. Exact analytical flow pattern from a rectangular cross-section with a moderate degree of 
penetration. After Miracapillo and Morel-Seytoux, 2014 

 

 
 

Fig. 2. Cross-section view showing the different components of the stream-aquifer system, 
applicable in the case of saturated connection 

 

 
 

Fig. 3. Cross-section view showing the different components of the stream-aquifer system, 
applicable in the case of unsaturated connection 
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In this case the normalized capillary pressure 
head profile (details in Appendix 2) is:  
 

 h
c

* 
1 h

cI

* i
S

*  eDzz
*

(1 h
cI

* i
S

* )

i
S

* [1 h
cI

* i
S

*  eDzz
*

(1 h
cI

* i
S

* )]

     (13)   

 

where z*=z/zf is the normalized coordinate, z is 
the vertical coordinate with origin at the interface 
oriented positive downward, and zf  denotes the 
position (depth) of the bottom of the unsaturated 
zone from the bottom of the clogging layer. 
 

At the interface between the clogging layer and 
the aquifer on the aquifer side there is a water 
content, θI, distinct from the average one within 
the unsaturated zone, θ. Furthermore, θs is the 
saturated water content in the aquifer, hcI is the 
capillary pressure at the interface, and its 

normalized value is * /cI cI ceh h h  where hce is 

the drainage entry pressure.  The seepage rate 
at the interface is is.  Dividing it by the vertical 
hydraulic conductivity of the aquifer, KV, its 

normalized value is * /s s Vi i K . The coefficient 

Dz is: 
 

* * *

* * *

(1 )((1 )
ln

(1 )(1 )

cI S S
z

S cI S

h i i
D

i h i

   
  

   

            (14) 

One can see from Eq. (13) that the capillary 
pressure takes the proper values at the water 
table and the interface (details in Appendix 2).  
The normalized water content is obtained as 

 *  (h
c

*)1/M , while zrf denotes the position 

(height) of the current water table (mound) as 
shown in Fig. 4. 
 
While the choice of the water content profile in 
the unsaturated zone is approximate, the 
process maintains mass balance and the 
essential dynamics of the process. D is the 
maximum thickness of the water table aquifer 
including the clogging layer below the river, that 
is:       
 

rcl f ce rfD e z h z                  (15) 

 
In other words, D is the sum of the streambed 
thickness, ecrl, the unsaturated zone thickness, 
the capillary fringe thickness, hce, and the water 
table height. 
 
Fig. 5 displays the shape of the unsaturated zone 
water content profile for a given set of 
parameters.  

 
 

 

 
 

Fig. 4. Water content profile below the riverbed and above the water table mound 
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Fig. 5. Water content profile in the unsaturated zone above the capillary fringe 
 
(Had there been no flow the capillary pressure at 
2 m above the capillary fringe would have been 
2.3 m but it is only 1.2 m because there is 
downward flow). 
 
Several different initial conditions are defined.  
(Some are applicable for the case of saturated 
connection).  It could be (1) incipient desaturation 
or hydrostatic condition or (3) general saturated 
condition. These conditions are described in 
Appendix 3. 
 
3.2 Estimation of Recharge Rate to the 

Water Table under Unsaturated 
Connection 

 

In that case  cI ceh h³                                 (16a)   

and   
 
* * 1I £ £                                              (16b) 

 
Dynamic estimation of the water velocity from the 
bottom of the streambed to the top of the 
capillary fringe will provide the average flow rate 
in the unsaturated zone. The expression for that 
average (in space) dynamic water velocity is):

  
 

*

*
[1 ( ) ] ( )p M

cS I rw f

V f

H k zv
v

K z

   
   (17a) 

 

or          
                       

v

K
V

 v* 
H

cS
[1 (h

cI

* )

pM

M ] k
rw
( )z

f

z
f

      (17b) 

 

This is an instantaneous value of a space 
average over the unsaturated zone.  Note that 
the first term on the right hand side of Eq. (17) 
expresses the capillary resistance to flow on the 
part of the water table. That capillary resistance 
being a potential is known exactly. It only 
depends on the end boundary conditions and is 
independent of the actual profile shape.  On the 
other hand the second term that represents the 
always down force of gravity is approximate 
because it depends upon the choice of the water 
content profile. 
 
For simplicity in writing let:  

 

H
cS
[1 (h

cI

* )

pM

M ]C
ap
R
es

                        (18) 

 

where C
ap
R
es

is the capillary resistance, a 

negative value. Then Eq. (24) has a simpler 
expression:   
 

v  KV [
CapRes

z f
 krw ( )]                      (19) 



 
 
 
 

Morel-Seytoux; PSIJ, 22(3): 1-23, 2019; Article no.PSIJ.49758 
 
 

 
7 
 

From a mass balance point of view the recharge 
rate to the top of the capillary fringe is the sum of 
the seepage rate through the clogging layer and 
of the amount of drainage from the unsaturated 
zone, symbolically: 
 

v
rech

mass  i
S
[
( o


r
)z

f

o

t

(

S


r
)(z

f

 z
f

o )

t
]
( 

r
)z

f

t
        

(20) 
 

(Even though the numerical value of Δt is 1 
(day), as a check on proper dimensionality of the 
derived expressions it is better to keep it 
explicitly. The superscript “mass” is not generally 
shown when mass estimate is meant).  The 
superscript “o” refers to old values, at the 
beginning of a period (time step). The superscript 
“ ” (or no superscript) refers to new values, at 
the end of the period.    
 

The space average instantaneous water flow rate 
in the unsaturated zone is: 

 

v  KV [
CapRes

z f
 krw ( )] (iS  vrech

dyn ) / 2             (21) 

 
from which one deduces:         
 

 v
rech

dyn  2K
V
[
C
ap
R
es

z
f

 k
rw
( )] i

S
        (22) 

 
The two Eqs. (20) and (22) for the recharge rate 
must give the same result. By equating the two 
expressions one obtains an expression for the 
depth of the unsaturated zone as a function of 
the capillary pressure at the interface: 

 

i
S
[
( o


r
)z

f

o

t

(

S


r
)(z

f

 z
f

o )

t
]
( 

r
)z

f

t
 2K

V
[
C
ap
R
es

z
f

 k
rw
( )] i

S
     (23a) 

 

Multiplying by z f and dividing by 2KV  one obtains:  

 

(
S
 )(z

f

)2

2K
V
t

{k
rw
 i

S

* 
(

S
 o )z

f

o

2K
V
t

}z
f
C

ap
R
es
 0     (23b) 

 

Setting 
( )

2
S

V

a
K t

 






                                                                                                         

 (24a)  

b  {k
rw
 i

S

* 
(

S
 o )z

f

o

2K
V
t

}

                                                

                                             (24b)   

 

and c  CapRes                                                                                                        (24c) 

 

the solution is:    
 

2 4

2
f

b b ac
z

a

  
                                                                                                       (25) 

 

Note that, since this value of zf is obtained by requiring that the recharge rate vrech be the same 
whether evaluated by mass balance or dynamically, in the later sections the stipulation that vrech is the 
mass balance or the dynamic estimate is superfluous since they have the same value. 
 

3.3 Evolution of (Water Table) Mound below the River Bed 
 

Because the driving force behind the transient evolution of the unsaturated seepage is the head in the 
river cell (the aquifer cell that contains the river reach cross-section), we look at how the aquifer zones 
react to that head and to the head in the river. Because of the complex interaction between these 
different zones (river, mound, river cell away from river banks, adjacent cells) to keep derivations (and 
illustrations) simple we simply look at how the mound reacts to the head in the half aquifer river cell 
not under the clogging layer (see Fig. 3), hf. (This is a reduced half river cell as it excludes the water-
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table mound below the river bottom). Naturally in practice the river head is affected by the river flow 
and its interaction with the aquifer below. Similarly the head in the river cell is affected by the heads in 
adjacent cells, conditioned by what happens in the full river-aquifer system, as a result of pumping, 
artificial recharge, etc.  These heads are not realistic boundary conditions.  Here we want to focus on 
the procedures to estimate seepage and therefore eliminate all complexities resulting from a full 
system that would obscure the manner in which seepage is estimated.  
 

The water table mound is excited by the recharge rate from the river and the lateral outflow to (or 
inflow from) the part of the river cell, which is not below the river.  Mass balance for the position of the 
mound is: 
 

 

ferf (BH )
dzrf
dt

 (BH )vrech KH (zrf  hf )

 (BH ){2KV [
CapRes
z f

 krw ] iS}KH (zrf hf )

                                      (26a) 

 

In this expression ferf  is the specific yield (effective porosity) in the mound region.  

 

The position of the center of the part of the half river cell on the right (or left) away from the river bank, 
which is G/4 – B/2, must exceed the standard far distance [4]. This requirement is necessary to 

guarantee: (1) the applicability of the SAFE  as the proper dimensionless conductance and (2) that 
the flow between the river cell and the adjacent cell will be horizontal, i.e. meets the Dupuit-

Forhheimer criterion.  This puts a limit on the minimum lateral size of the river cell.  Let   be that 
excess distance. Also the SAFE dimensionless conductance appearing in Eq. (26) must be 

 anisflat
 accounting for the fact that there is no longer river penetration, but the possibility of 

anisotropy in the aquifer and for an excess distance over the standard far distance.  Eq. (26a) slightly 
rewritten is: 

ferf (BH )
dzrf

dt
KHzrf  KHhf  (BH )vrech  (26b) 

 

Dividing throughout by ΓKH, setting    s rf 
BH

KH
                                                       (27a)   

Crf ferfs rf                                                                                                        (27b) 

 

one obtains:  

   
 

Crf
dzrf

dt
 zrf  hf s rf vrech                                                                                 (28)                                                   

 

or more simply defining the excitation as:  
 

Erf  hf s rf KV {2[krw ( )
CapRes ]

z f
] iS

*}                                                     (29a)                          

or  
 

Erf  hf s rf vrech                                                                                                        (29b)    

  

thus 
 

( )rf o o
rf rf rf rf rf

dz
C z E E E t

dt
                                                                               (29c) 
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with structure of a Linear Reservoir hydrologic routing model with constant “time constant” with a 
linear variation of the excitation with time.  
  

The expression (see Appendix 4) applied for zrf (n) (where n is the period (usually day) number for 

time) is:  
 

              

zrf
dyn(n)  rrf zrf (n1)arf [hf (n1)s rf vrech (n1)] 

             brf [hf (n)s rf vrech (n)]                                                                              (30) 

 
with  
 

rrf  e

1

Crf

                                         
 (31a) 

 
  

a
rf
 [C

rf
(1 r

rf
) r

rf
]                     (31b) 

 
 

  brf  [1Crf (1 rrf )]                     (31c) 

 
3.4 Procedural Steps  
 
The external excitations to the system are the 
stage (maximum water depth) in the river, H, and 
the head in the part of the half river cell away 

from the banks, hf . The first step is to estimate 

(guess) the value of the interface capillary 
pressure, hcI, and thus determine θI, θ and iS as 
well.  Then one estimates a value for zf by 
requiring that the recharge rates estimated by 
mass balance and dynamically be the same, 
using Eq. (25).  That defines a value of zf.  Next 
the value of zrf is obtained by mass balance and 
dynamically.  
 

One estimates the value of zrf by mass balance: 
 

  zrf
mass  zrf  D ecl  z f  hce                       (32) 

 

and dynamically, 
dyn
rfz , using Eq. (30). 

 
Had one chosen the right value for hcI the two 
estimated values for zrf would be the same. If 
they are not the same then iteratively one 
chooses other values of hcI so that ultimately the 
two values match within a given tolerance.  Once 
that tolerance is met the right values of hcI and of 
all the other variables are obtained.   

4. NUMERICAL EXAMPLE 
 

The purpose of that example is to show the 
difference in results using the strict MODFLOW 
approach and the one proposed in this article.  
The results provide an idea of how large the 
differences can be, though of course the 
magnitude of the differences will depend strongly 
on the values of the parameters. The example 
also illustrates the fact that the differences not 
only depend on the parameters but also exist 
due to the structural differences in the 
conceptualization of the processes. 
 

Parameters of the system are provided in       
Table 1. 
 

The minimum grid size must be 8Daq  4B .  

In this case the cell size should equal or exceed 
160 + 20 = 180 m. Nevertheless the grid size is 
chosen conservatively to be 200 m. The excess 

far distance is G

4
 B 2

Daq

1
200/4 – 5 – 2(20) 

= 5. 
 

Fig. 6 displays the evolution of the head in the 
river, the mound and the river cell.  To facilitate 
the interpretation of the results the river stage is 
maintained constant at a value of 0.1 m.  Thus 
affecting the evolution of seepage and recharge 
is the variation of the head in the river cell.  It 
varies in such a way that at times the hydraulic 
connection between the river and the aquifer is 
saturated and at other times it is unsaturated. As 
long as the connection is saturated the head in 
the river cell and in the mound below the river 
bottom are the same. 
 

At first the river is gaining from the aquifer as the 
head in the aquifer exceeds the river stage.  The 
seepage is algebraically negative in that case as 
Fig. 7 shows.  At time 20 the head which had 
been declining starts to rise.  
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Table 1. Parameters of the system 
 

Parameter Definition Unit Value 
D Aquifer thickness below river bottom m 20 
B Half-width of the river m 5 
G 

  

Lateral grid 
Excess far distance 

m 
m 

200 
5.0 

KH Aquifer hydraulic conductivity  
(horizontal)  

m/day 2.5 

KV Aquifer hydraulic conductivity  
(vertical) 

m/day 2.5 

Krcl Hydraulic conductivity of clogging layer m/day 0.01 
ercl Thicknesss of clogging layer m 0.4 
hce BC air entry value, aquifer 

BC air entry value, clogging layer 
m 
m 

0.30 
2.00 

M BC exponent, aquifer 
BC exponent, clogging layer 

- 
- 

2.5 
2.5 

p BC Exponent conductivity aquifer 
BC exponent conductivity clogging layer 

- 
- 

5 
5 

Hini Water level in river m 0.1 
hf

ini 
Initial head in the aquifer river cell m 20.7 

 

 
 

Fig. 6. Heads in the river, the mound and the aquifer cell  
 
It rises so much that by time 35 resaturation is 
taking place and by time 38 the river is gaining 
from the aquifer.  Then it declines again and by 
time 49 desaturation occurs and it remains the 
condition till the end of the simulation. 
 

In the case of MODFLOW there is no distinction 
between seepage and recharge.  It is assumed 
that the seepage rate instantly recharges the 
aquifer cell below the river bottom as shown in 
Fig. 7. Also the Figure shows quite clearly that 
the differences are not the results of different 
values of the parameters but due to structural 
differences in the compared approaches.  

Under MODFLOW the seepage remains 
constant for long period of times while in reality it 
changes very significantly.  
 
Fig. 8 displays the evolution of capillary pressure 
at the interface.  Whenever that value exceeds 
the entry pressure (0.30 m) seepage is occurring 
under an unsaturated connection, At time 8 the 
capillary pressure exceeds the entry pressur    
(0.3 m), the connection becomes unsaturated 
and recharge now exceeds the seepage                    
as a result of drainage of moisture below the 
riverbed. 
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Fig. 9 shows the water content distribution within the 
unsaturated zone with time. 
 
(Appendix 5 summarizes the results and 
provides a glossary of terms). 
 

5. DISCUSSION BASED ON THE 
RESULTS OF THE NUMERICAL 
EXAMPLE 

 

For this particular set of parameters, given that a 
very tight clogging layer exists, under a 
saturated condition the predictions between 

MODFLOW and the proposed method are very 
close. In this case MODFLOW’s assumption that 
all the resistance is taking place vertically 
through the clogging layer (and none to allow for 
the flow to turn from a vertical to a horizontal 
direction) is practically correct.  However when 
the connection becomes unsaturated then the 
difference is major.  The assumption that the 
head drop driving the flow is the head difference 
between the river and the elevation of the 
bottom of the riverbed is not valid.  The location 
of the water-table mound below the riverbed 
does have an impact on the seepage rate.  

 

 
 

Fig. 7. Seepage from the river and recharge rate to the aquifer  
 

 
 

Fig. 8. Capillary pressure at interface 
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Fig. 9. Average water content in the unsaturated zone and value at interface 
 
A major problem with these old methods is the 
basic assumption that the flow is driven by a 
difference of head between the river and an 
average head in a river cell whose dimensions 
are large compared to the width of the river.  
Clearly the head difference should be with a 
head in the aquifer that is close to the bottom of 
the river.  Under an unsaturated connection it 
should be quite clear that the relevant head is 
not the average head in a huge river cell but the 
head of the water-table mound present below 
the riverbed.   
 
If a single leakance coefficient is used under 
saturated or unsaturated connection as is done 
here for the estimation by MODFLOW’s 
approach then clearly it cannot be accurate 
under all circumstances.  With the new approach 
presented here that leakance coefficient is 
constantly changing based on the physical 
situation and the prevailing circumstances, as 
demonstrated in the numerical example. 
 

6. POTENTIAL QUESTIONS OF THE 
PRACTICAL MERIT OF THE 
PROPOSED APPROACH 

 
Fig. 1 shows an analytical solution for saturated 
seepage in the case of a homogenous saturated 
flow condition. Such analytical solution is also 
available in the case of anisotropy [4].  Is this 
approach possible in a heterogeneous case? 
Probably not or with great difficulty and only 
under very specific mathematical assumptions 
on the type of heterogeneity.  However the 
purpose of these recent investigations that span 
a decade, e.g. [2,6] is to improve the accuracy of 
MODFLOW and similar models for large-scale 

regional studies where Finite Difference or 
Element numerical tools are used.  In such 
studies the river cell width is much larger than 
the width of the river and in that cell the hydraulic 
conductivity is uniform.  In that cell there is 
perfect homogeneity.  For the compatibility and 
combination of the analytical approach with the 
numerical techniques some of the 
approximations of the numerical techniques 
have be accepted.  
  
Whether in MODFLOW or in this article there is a 
constant mention of a clogging layer, 
characterized by its thickness and hydraulic 
conductivity.  They always appear together in the 

form of a ratio, Lrcl 
Krcl
ercl

, called the 

leakance coefficient. How could that leakance 
coefficient be determined in practice? With 
MODFLOW such leakance coefficient is obtained 
by calibration on historical records of 
groundwater levels and streamflows.  However 
what is calibrated is a composite value that 
includes the resistance of a clogging layer if such 
really exists and other factors such as resistance 
due to the curving of the flow lines (see Fig. 1) 
and the size of the river cell.  What the new 
approach provides is an ability given the 
calibrated value of the leakance coefficient to 
extract from it the leakance coefficient that is 
actually due to a clogging layer if it does exist.  
That procedure is discussed in a separate 
forthcoming article.  
 
Accuracy of approximate analytical 
unsaturated zone solution: One might 
legitimately question the accuracy of the 
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proposed analytical solution.  However a simple 
look at Fig. 7 shows that the approach would 
provide a better estimation of seepage with the 
ability to separate what is actually seepage from 
what is actually recharge of the aquifer.  Also it is 
clear that MODFOW’s approach with a constant 
value of the recharge rate is not realistic and 
must be in significant error. Still without 
questioning the improvement provided by this 
new approach one may still wonder how 
accurate the results may be.  A comparison with 
a fine-grid numerical solution based on 
unsaturated flow equations (such as Richards 
eq.) would be valuable from a theoretical point of 
view.  Such comparison should be pursued and 
it would be best if it was pursued by others than 
the author as it would be unbiased. It might 
provide ideas on how to improve the 
approximate analytical solution.  
 

Testing of approach on a real case: As 
mentioned in the previous section and for the 
same reason it would be best done by others 
than the author.  The problem with real systems 
is that the representation of a real system (itself 
never perfectly known) by MODFLOW is itself a 
theoretical concept.   In addition to the 
misrepresentation of some of the physical 
principles in the model the knowledge of the 
parameters obtained primarily by calibration is 
always uncertain.  Thus results of tests on a real 
case are always themselves subject to great 
deal of uncertainty.  It would be best to create a 
theoretical but realistic system for which there is 
no uncertainty in the parameters and where to 
represent the unsaturated zone a fine-grid 
numerical solution based on unsaturated flow 
equations is used to test any new approach.  
 

7. CONCLUSION 
 

Many previous studies have shown that the early 
methodology to estimate the flow interaction 
between a river and a connected aquifer, as 
described in a number of manuals, was not very 
physically based.  Yet that methodology is still 
much in used today, particularly in large-scale 
regional studies.  That situation is especially 
critical when the connection becomes 
unsaturated and the situation alternates between 
the two conditions.  An alternative approach is 
presented which has a sound physical basis and 
allows the situation to alternate between a 
saturated and unsaturated connection.  This is 
done with recourse to simple analytical 
procedures and avoids reliance on complex and 
time-consuming numerical solutions of the two-
dimensional unsaturated flow equations.  

Because in this article the emphasis is on the 
estimation of seepage and recharge the river 
stage and the aquifer river cell are treated as the 
decision variables.  That way comparison with 
MODFLOW is not obscured by the influence of 
many other factors.  In actual studies they are 
not decision variables but rather state variables 
depending on routing of flow in the river and the 
influence of adjacent cells in a large system.  
Other articles have already suggested more 
efficient analytical routing procedures and how to 
treat the river cell head as a state variable 
depending on the recharge from the river and 
the influence of the heads in the adjacent cells 
and more articles will explore these aspects and 
publish them in greater details in the future.     
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APPENDICES 
 

Appendix 1. Using the Brooks-Corey formulation 
 
Normalized water content is defined as:  
 

rs

r









*                                                              (1) 

 

Capillary pressure (head), hc , expressed as an equivalent water height is represented in the 

unsaturated zone by a power law (Brooks-Corey, BC) as:  
 

hc  hce (
*)M                                                      (2) 

 

where hce  is the entry pressure.  In the BC original notations a parameter l  is used and M is simply 

the inverse of l ) That capillary pressure is positive in the unsaturated zones and in the capillary 

fringes.  hcI  denotes the capillary pressure at the interface between the bottom of the clogging layer 

and the aquifer below.  This pressure is continuous across the interface. 
 

Relative permeability, krw , in the unsaturated zone is defined by a power law as: 

 

krw  (
* )p                                                (3) 

 

In the BC original notations a power e 
h

l
 is used which is simply p.  Note that the power p is 

always much greater than M. BC suggested a relation between p and M, p  3 2M .   Actually p 

can be less than 3 so this is a rough approximation. Then 
 

krw  (
*)p                                                                                   (4a) 

  

for hc ³ hce  
 

 

krw 1                                                                                   (4b)  
 

for hc £ hce  
 

 

(
hc
hce
)  (*)M                                                                                  (5a)  

 

for  hc ³ hce   
 

or vice versa *  (
hc
hce
)

1

M                                                                                 (5b) 
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Also krw  (
hc
hce
)

p

M                                                                     (6a)  

 

for hc ³ hce   

 
 
and 
 
 

krw 1                                                                                    (6b)  
 

otherwise. 
 
 

 
Appendix 2. Steady-state unsaturated seepage water content profile 

 
Darcy’s equation:    

   

v* 
v

KV
 krw[

hcedhc
*

dz
1]                                                                      (1) 

 

Expressing krw  as a function of hc : 

 

krw  (hc
*)

p

M  (hc
*)a                                               (2) 

 
Substitution in Eq. (1) yields: 
 

v*  (hc
*)a[

hcedhc
*

dz
1]  or    

v*  (hc
*)a

(hc
*)a


hcedhc

*

dz
                               

    (3) 

 
Separation of variables yields: 
 

(hc
*)a dhc

*

v*  (hc
*)a


dz

hce
                                               (4) 

 

Let x  hc
* v*  then   hc

*  x / v* and    dhc
* 

dx

v*  
Substitution in Eq. (4) yields: 
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(
x

v*
)a

dx

v*

v*  (
x

v*
)a


dz

hce
                                                                                                        (5) 

 

In case a  2   

(
v*

x2
)
dx

v*

v* 
v*

x2


dz

hce
   or  

dx

x2 v*

1
1

x2


dz

hce
  or 

dx

1 x2
  v*

dz

hce
                               (6) 

 
Note that Eq. (4) is also integrable exactly for values of a  equal to 3 and 4. Integration of Eq. (5b) 

between the limits hc
* v*  and hcI

* v*  yields: 

 

1

2
ln(
1 x

1 x
)
hc
* v*

hcI
* v*


v*z

hce
                                                 (7) 

 

or ultimately: 
 

1

2
ln{(

1 hcI
* v*

1 hc
* v*

)(
1 hc

* v*

1 hcI
* v*

)}
v*

hce
z                                                         (8) 

 

When hc
* 1, one is at the top of the capillary fringe and then: 

 

1

2
ln{(

1 hcI
* v*

1 v*
)(
1 v*

1 hcI
* v*

)} 
v*

hce
z f                                  (9)  

 

Defining:  Dz  ln{(
1 hcI

* v*

1 v*
)(
1 v*

1 hcI
* v*

)}                               (10)  

 
and dividing Eq. (8) by Eq. (9) one obtains: 

 

z* 
z

z f
 ln{(

1 hcI
* v*

1 hc
* v*

)(
1 hc

* v*

1 hcI
* v*

)} /Dz                                 (11) 
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which solved for the normalized capillary pressure yields:  
 

hc
* 

1 hcI
* v*  e

Dzz
*
(1 hcI

* v* )

v*[1 hcI
* v*  e

Dzz
*
(1 hcI

* v* )]                                            (12) 
 

One can verify that for z*  0  one obtains correctly hc
*  hcI

*
.  For z* 1 one obtains also 

correctly hc
* 1 . That follows from the very definition of the parameter Dz . 

 

If  v* < 0  let tan(hcI
* v* )  A , tan( v* )  P   and Dz  A P  

 
The relation between normalized capillary pressure and normalized unsaturated zone coordinate 

z* 
z

z f
 is:   

 

z* 
A tan(hc

* v* )

Dz

 or  hc
* 
tan1[ADzz

* ]

v*
  

 

while the full thickness of the unsaturated zone is: z f 
hceDz

v*  

 

 
Appendix 3. Initial Conditions 

 
Hydrostatic condition: 
 
At initial incipient desaturation the seepage (infiltration) flux (area per time) through the interface on 
one side is:   
 

(BH )i
S

ini  (BH )K
rcl
[
h
ce
H  e

rcl

e
rcl

]                                                                                (1) 

 
where B is half the width of the river bottom, Krcl is the conductivity of a (real) clogging layer, ercl its 
thickness, and H the water depth in the river.  The flux transmitted out of the mound into the river cell 
(e.g. Morel-Seytoux et al., 2014; Morel-Seytoux, 2009) is:  
 

K
H
 (z

rf
 h

f
)  (BH )i

S

ini
                                                                                                (2) 

 
where Γ is the SAFE dimensionless conductance (Morel-Seytoux et al., 2016), KH is the aquifer 
horizontal conductivity and hf is the head in the part of the half river cell away from the river bank.  
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At incipient desaturation, since zf=0,   
 

z
rf

ini  D e
rcl
 h

ce  
                                                                                                          (3) 

 
and it follows from Eq. (2) that  
 

h
f

ini  z
rf

ini 
(BH )i

S

ini

K
H


                                                                                                          (4) 

 
These are possible chosen initial conditions in the river and the aquifer so that simulation starts at 
incipient desaturation time and continues unsaturated.  
 
Hydrostatic condition: 
 

iS
ini 

KH(hS
ini  hf

ini )

BHini
z f
ini  0zrf

ini  hf
ini  ercl                                                      (1)      

 

 z f
ini  0                                                                                                                                (2)  

  

 z
rf

ini  D e
rcl
 h

ce
                                                                                                                (3) 

 

iS
ini  0  vrech

ini
                                                                                                                      (4)  

 

 hcI
ini  (Hini  ercl )                                                                                                           (5) 

 
General saturated condition: 
 

In this case  hS
ini  DHini  (1)  hf

ini  D l    (2) where l  is an arbitrary number but greater 

than the negative of the entry pressure hce £ l  so that no unsaturated zone exists  below the 

riverbed at initial time. 
 

iS
ini 

KH(hS
ini  hf

ini )

BHini
   (3)   z f

ini  0    (4)   zrf
ini  hf

ini  ercl  hce   (5) 

 

 
Appendix 4. Constant C Linear Reservoir type equation with a right hand-side 

excitation varying linearly in time 
 

The excitation varies linearly in time and thus the basic governing equation is:       
 

C
dU

dt
U  Eo  (E Eo )t                                                                                   (1) 

 
We look for a solution of the form:    
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U(t)  AMt De

t

C                                                                                                       (2) 

 

dU(t)

dt
M 

D

C
e

t

C                                                                                                           (3) 

 
Substitution in Eq. (1) yields: 
 

C(M 
D

C
e

t

C )[AMt De

t

C ] Eo  (E Eo )t                                                (4) 

 
Satisfaction of the equation requires that:  
 

M  (E Eo )                                                                                                                      (5)  

 
and 
 

A  Eo C(E Eo )                                                                                                          (6) 

 
 
Substitution in Eq. (2) yields:  
 

U(t)  Eo C(E Eo) (E Eo)t De

t

C                                                           (7) 

 
 

At time zero then: U(0)  Eo C(E Eo )D                                                              (8)  

 
which yields D.   
 
Substitution in Eq. (7) yields: 
 

U(t) U(0)e

t

C [Eo C(E Eo )](1 e

t

C ] (E Eo )t                                     (9) 

 

Application for end of period n making t 1 and setting rU  e

1

C                                    (10)  

 
yields:  
 

U(n)  rUU(n1) (1 rU ){E(n1)C[E(n)E(n1)]}[E(n)E(n1)]   (11) 

 
Grouping terms: 
 

U(n)  rUU(n1){(1 rU )(1C)1}E(n1){1C(1 rU )}E(n)             (12)   

 
  or  
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U(n)  rUU(n1)[C(1 rU ) rU ]E(n1)[1C(1 rU )]E(n)                   (13) 

 

with   aU  [C(1 rU ) rU ]                                                                                            (14a)   

 

bU  [1CU (1 rU )]                                                                                                     (14b) 

 
then Eq. (13) becomes:   
 

U(n)  rUU(n1)aUUE(n1)bUE(n)                                                               (15) 

 
 

 
Appendix 5. Tabulated results for the numerical example 
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unsatseep#22_results_2018.mp 
 DAY   JU    HCI      ZF     HSTAGE    ZRF        HF     HFRP     AISRP    AIS     VRECH    WCI     WC  
   0   -1  -0.5000   0.0000  20.1000  20.0000  20.7000  20.7000  -.0130  -.0130  -.0130  0.4000 0.4000    
   1   -1  -0.8477   0.0000  20.1000  20.4584  20.5000  20.5000  -.0100  -.0087  -.0087  0.4000 0.4000    
   2   -1  -0.6737   0.0000  20.1000  20.2790  20.3000  20.3000  -.0050  -.0043  -.0043  0.4000 0.4000    
   3   -1  -0.5000   0.0000  20.1000  20.1000  20.1000  20.1000  0.0000  0.0000  0.0000  0.4000 0.4000    
   4   -1  -0.3265   0.0000  20.1000  19.9214  19.9000  19.9000  0.0050  0.0043  0.0043  0.4000 0.4000    
   5   -1  -0.1533   0.0000  20.1000  19.7431  19.7000  19.7000  0.0100  0.0087  0.0087  0.400  0.4000    
   6   -1   0.0197   0.0000  20.1000  19.5653  19.5000  19.5000  0.0150  0.0130  0.0130  0.400  0.4000    
   7   -1   0.1923   0.0000  20.1000  19.3878  19.3000  19.3000  0.0200  0.0173  0.0173  0.400  0.4000    
   8    1   0.3647   0.0892  20.1000  19.2108  19.1000  19.1000  0.0250  0.0216  0.0216  0.385  0.4000    
   9    1   0.4559   0.1585  20.1000  19.1415  18.9000  18.9123  0.0125  0.0239  0.0266  0.369  0.3831    
  10    1   0.5444   0.2501  20.1000  19.0499  18.7000  18.7178  0.0125  0.0261  0.0295  0.357  0.3758    
  11    1   0.6705   0.3843  20.1000  18.9157  18.5000  18.5212  0.0125  0.0293  0.0358  0.345  0.3672    
  12    1   0.8047   0.5333  20.1000  18.7667  18.3000  18.3238  0.0125  0.0326  0.0416  0.334  0.3596    
  13    1   0.9379   0.6906  20.1000  18.6094  18.1000  18.1260  0.0125  0.0359  0.0468  0.326  0.3531    
  14    1   1.0649   0.8531  20.1000  18.4469  17.9000  17.9279  0.0125  0.0391  0.0514  0.320  0.3477    
  15    1   1.1825   1.0191  20.1000  18.2809  17.7000  17.7296  0.0125  0.0421  0.0555  0.315  0.3430    
  16    1   1.2888   1.1879  20.1000  18.1121  17.5000  17.5312  0.0125  0.0447  0.0591  0.311  0.3390    
  17    1   1.3834   1.3592  20.1000  17.9408  17.3000  17.3327  0.0125  0.0471  0.0622  0.308  0.3356    
  18    1   1.4667   1.5343  20.1000  17.7657  17.1000  17.1339  0.0125  0.0492  0.0651  0.306  0.3326    
  19    1   1.5404   1.7172  20.1000  17.5828  16.9000  16.9348  0.0125  0.0510  0.0680  0.303  0.3299    
  20    1   1.6046   1.9072  20.1000  17.3928  16.7000  16.7353  0.0125  0.0526  0.0705  0.302  0.3275    
  21    1   1.5971   1.8126  20.1000  17.4874  17.6000  17.5943  0.0125  0.0524  0.0450  0.302  0.3278    
  22    1   1.5293   1.6074  20.1000  17.6926  17.7000  17.6996  0.0125  0.0507  0.0318  0.304  0.3303    
  23    1   1.4609   1.4664  20.1000  17.8336  17.8000  17.8017  0.0125  0.0490  0.0355  0.306  0.3328    
  24    1   1.3941   1.3379  20.1000  17.9621  17.9000  17.9032  0.0125  0.0474  0.0355  0.308  0.3352    
  25    1   1.3280   1.2229  20.1000  18.0771  18.0000  18.0039  0.0125  0.0457  0.0353  0.310  0.3376    
  26    1   1.2616   1.1164  20.1000  18.1836  18.1000  18.1043  0.0125  0.0440  0.0347  0.312  0.3400    
  27    1   1.1940   1.0156  20.1000  18.2844  18.2000  18.2043  0.0125  0.0423  0.0337  0.315  0.3426    
  28    1   1.1244   0.9185  20.1000  18.3815  18.3000  18.3042  0.0125  0.0406  0.0326  0.317  0.3453    
  29    1   1.0525   0.8239  20.1000  18.4761  18.4000  18.4039  0.0125  0.0388  0.0312  0.321  0.3482    
  30    1   0.9782   0.7310  20.1000  18.5690  18.5000  18.5035  0.0125  0.0370  0.0298  0.324  0.3513    
  31    1   0.8812   0.6151  20.1000  18.6849  18.7000  18.6992  0.0125  0.0345  0.0262  0.330  0.3558    
  32    1   0.7530   0.4706  20.1000  18.8294  18.9000  18.8964  0.0125  0.0313  0.0218  0.338  0.3624    
  33    1   0.6028   0.3098  20.1000  18.9902  19.1000  19.0944  0.0125  0.0276  0.0187  0.351  0.3716    



 
 
 
 

Morel-Seytoux; PSIJ, 22(3): 1-23, 2019; Article no.PSIJ.49758 
 
 

 
22 

 

  34    1   0.4353   0.1370  20.1000  19.1630  19.3000  19.2930  0.0125  0.0234  0.0166  0.372  0.3849    
  35    1   0.3002   0.0013  20.1000  19.2987  19.5000  19.4897  0.0125  0.0200  0.0179  0.399  0.4000    
  36   -1   0.3002   0.0013  20.1000  19.2987  19.7000  19.4897  0.0125  0.0200  0.0179  0.399  0.4000    
  37   -1  -0.3268   0.0000  20.1000  19.9218  19.9000  19.9000  0.0050  0.0043  0.0043  0.400  0.4000    
  38   -1  -0.5000   0.0000  20.1000  20.1000  20.1000  20.1000  0.0000  0.0000  0.0000  0.400  0.4000    
  39   -1  -0.6735   0.0000  20.1000  20.2786  20.3000  20.3000  -.0050  -.0043  -.0043  0.400  0.4000    
  40   -1  -0.8472   0.0000  20.1000  20.4576  20.5000  20.5000  -.0100  -.0087  -.0087  0.400  0.4000    
  41   -1  -0.3263   0.0000  20.1000  19.9210  19.9000  19.9000  0.0050  0.0043  0.0043  0.400  0.4000    
  42   -1  -0.2400   0.0000  20.1000  19.8323  19.8000  19.8000  0.0075  0.0065  0.0065  0.400  0.4000    
  43   -1  -0.1534   0.0000  20.1000  19.7433  19.7000  19.7000  0.0100  0.0087  0.0087  0.400  0.4000    
  44   -1  -0.0669   0.0000  20.1000  19.6544  19.6000  19.6000  0.0125  0.0108  0.0108  0.400  0.4000    
  45   -1   0.0195   0.0000  20.1000  19.5656  19.5000  19.5000  0.0150  0.0130  0.0130  0.400  0.4000    
  46   -1   0.1058   0.0000  20.1000  19.4769  19.4000  19.4000  0.0175  0.0151  0.0151  0.400  0.4000    
  47   -1   0.1921   0.0000  20.1000  19.3882  19.3000  19.3000  0.0200  0.0173  0.0173  0.400  0.4000    
  48   -1   0.2783   0.0000  20.1000  19.2997  19.2000  19.2000  0.0225  0.0195  0.0195  0.400  0.4000    
  49    1   0.3644   0.0887  20.1000  19.2113  19.1000  19.1000  0.0250  0.0216  0.0216  0.385  0.4000    
  50    1   0.4028   0.1041  20.1000  19.1959  19.0000  19.0100  0.0125  0.0226  0.0238  0.377  0.3881    
  51    1   0.4507   0.1531  20.1000  19.1469  18.9000  18.9126  0.0125  0.0238  0.0250  0.370  0.3835    
  52    1   0.5175   0.2221  20.1000  19.0779  18.8000  18.8142  0.0125  0.0254  0.0278  0.360  0.3779    
  53    1   0.5901   0.2980  20.1000  19.0020  18.7000  18.7154  0.0125  0.0273  0.0305  0.352  0.3725    
  54    1   0.6646   0.3775  20.1000  18.9225  18.6000  18.6164  0.0125  0.0291  0.0332  0.345  0.3675    
  55    1   0.7393   0.4589  20.1000  18.8411  18.5000  18.5174  0.0125  0.0310  0.0357  0.339  0.3631    
  56    1   0.8130   0.5416  20.1000  18.7584  18.4000  18.4183  0.0125  0.0328  0.0380  0.334  0.3592    
  57    1   0.8852   0.6253  20.1000  18.6747  18.3000  18.3191  0.0125  0.0346  0.0403  0.329  0.3556    
  58    1   0.9555   0.7098  20.1000  18.5902  18.2000  18.2199  0.0125  0.0364  0.0424  0.325  0.3523    
  59    1   1.0234   0.7951  20.1000  18.5049  18.1000  18.1207  0.0125  0.0381  0.0445  0.322  0.3494    
  60    1   1.0887   0.8812  20.1000  18.4188  18.0000  18.0214  0.0125  0.0397  0.0465  0.319  0.3467    
  61    1   1.1191   0.9199  20.1000  18.3801  18.1000  18.1143  0.0125  0.0405  0.0437  0.318  0.3455    
  62    1   1.1050   0.8970  20.1000  18.4030  18.2000  18.2104  0.0125  0.0401  0.0384  0.318  0.3460    
  63    1   1.0689   0.8475  20.1000  18.4525  18.3000  18.3078  0.0125  0.0392  0.0353  0.320  0.3475    
  64    1   1.0179   0.7813  20.1000  18.5187  18.4000  18.4061  0.0125  0.0379  0.0328  0.3227 0.3496    
  65    1   0.9567   0.7055  20.1000  18.5945  18.5000  18.5048  0.0125  0.0364  0.0307  0.325  0.3523    
  66    1   0.8881   0.6240  20.1000  18.6760  18.6000  18.6039  0.0125  0.0347  0.0288  0.329  0.3554    
  67    1   0.8138   0.5391  20.1000  18.7609  18.7000  18.7031  0.0125  0.0328  0.0271  0.334  0.3591    
  68    1   0.7353   0.4521  20.1000  18.8479  18.8000  18.8024  0.0125  0.0309  0.0254  0.339  0.3634    
  69    1   0.6533   0.3638  20.1000  18.9362  18.9000  18.9018  0.0125  0.0288  0.0238  0.346  0.3683    
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  70    1   0.5686   0.2745  20.1000  19.0255  19.0000  19.0013  0.0125  0.0267  0.0223  0.354  0.3740    
  71    1   0.5211   0.2254  20.1000  19.0746  18.9500  18.9564  0.0125  0.0255  0.0234  0.360  0.3776    
  72    1   0.5174   0.2218  20.1000  19.0782  18.9000  18.9091  0.0125  0.0254  0.0253  0.360  0.3779    
  73    1   0.5357   0.2408  20.1000  19.0592  18.8500  18.8607  0.0125  0.0259  0.0267  0.358  0.3764    
  74    1   0.5652   0.2717  20.1000  19.0283  18.8000  18.8116  0.0125  0.0266  0.0280  0.355  0.3742    
  75    1   0.6000   0.3083  20.1000  18.9917  18.7500  18.7623  0.0125  0.0275  0.0292  0.351  0.3718    
  76    1   0.6372   0.3477  20.1000  18.9523  18.7000  18.7129  0.0125  0.0284  0.0304  0.348  0.3693    
  77    1   0.6753   0.3887  20.1000  18.9113  18.6500  18.6633  0.0125  0.0294  0.0316  0.344  0.3669    
  78    1   0.7138   0.4304  20.1000  18.8696  18.6000  18.6137  0.0125  0.0303  0.0327  0.341  0.3646    
  79    1   0.7522   0.4726  20.1000  18.8274  18.5500  18.5641  0.0125  0.0313  0.0338  0.338  0.3624    
  80    1   0.7903   0.5152  20.1000  18.7848  18.5000  18.5145  0.0125  0.0323  0.0349  0.335  0.3603    
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