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Abstract

We transform a zeta function to the alternative sum as (*(s) = > o7, (_nlﬁ)n and represent it as
some series, for example

 (5)2nC" (s + 2n)  (5+ 1)2nC*(s +2n)
SlmClrm  Siesipcaim

n=1 n=1

etc., where (s), =s(s+1)---(s+mn—1), Re(s) > 1, and we obtain their formulas.
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1 Introduction

For Re(s) > 1 the Riemann zeta function ((s) is defined by

= 1
il 1.1
It is well known that ((s) can be continued analytlcally to the whole complex plane except for a

simple pole at s = 1 with residue 1. Moreover, ((0) = —1/2. [1] gives an elementary proof of the
classical result

In [2] Ewell modifies Boo Rim Choe’s method to show a new series representation of {(3), namely,

2 & ¢(2n)
3)=—— g .
<G 7 = (2n+1)(2n+2)2>"
In this paper we set an alternative sum as
= 1.2
> (1.2)

n=1

and

(0= (3) % (1.9

where the Legendre-Jacobi-Kronecker symbol for discriminant —4, that is for n € N

0, if n=0 (mod 2),

<;4> =41, if n=1 (mod 4),
-1, if mn=3 (mod4).

Then we obtain

Theorem 1.1. We have

(a)
> SHQ;"_HC BB - e )12 Re(s) >0
=
(b)
S Ll -, R >0
(c)
i S+122;C|228n+ 2n) (s - 2E(s+ 1), Re(s) > 1,
=
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where (s)n = s(s+1)---(s+n—1) and (s)o = 1.
Theorem 1.2. We have

o~ ((2n+1)
> e =-l+h
n=1

2 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. For 0 < a <1 and Re(s) > 1 the function (s, a) is defined by
S (L
C (Sva) - Z (n+a)s'
n=0

In fact, ¢* (s, a) is similar to the Hurwitz zeta function, named after Adolf Hurwitz, which is defined
for complex arguments s with Re(s) > 1 and ¢ with Re(q) > 0 by

- 1
C(s,q) = Zm

n=0

Now we set

u(s,a) =C¢"(s,a) — ¢"(s,1 — a), 0<a<l1, Re(s)>1.

Then we have

ey
:E—i_mzzl(m—l—a)s+mZ:1(m—a)S
SR SR R SR )

Since

plsa) = o+ >0 ELE S B ()" (g

ms n! \m
m=1 n=0
1 (9)ama® S (=)
= — 2 .
PR e b
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Similarly with

As,a) =" (s,a) + (5,1 —a), 0<a<l1, Re(s)>1.

we obtain
1 o @zl (s 22— 1) 5
A(s,a) = pe 23:1 @n 1! a . (2.2)

1
(a) Letting a = 3 and changing s into s + 1 in (2.2), we obtain

gst1 _ (s+ 1)2n-1¢"(s + 2n) 1
= As+1, -

n§::1 (2n — 1)122n (s+ ’2)

N 1

=2C (s—|—1,§)

p— = 1 "
- Z 1 s+1
n=0 2
= 2°+2 (7
; (2n+1)s+1
=22 (s +1).

Therefore

St O g

(b) Letting a = % in (2.1), we have
(8)2nC* (s + 2n) 1,
2 +22 (2n)122n “(572)_0
and so

Sl (),

n=

(¢) Adding Theorem 1.1 (a) to (b) and noticing

-

(s)2n +2n(s + 1)2n—1 = (s + 1)2n

we deduce that

(2n)122n

Z (54 1)2n("(s +2n) =—("(s) = 2%¢(s + 1).
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Lemma 2.1. We have

(a)
i 2n + 1)

n=1

l\’)h—l

Proof.  (a) We take s =1 in Theorem 1.1 (a) then we obtain

(2)2n—1¢" (1 + 2n)
(2n —1)122n

L

—2£(2)+ 1=

3
Il
-

2.3 (2n)¢*(2n + 1)

p"qg

= (2n — 1)1227
= 2nCt(2n + 1)
Z 22n

3
Il
-

and so
1 2n + 1)
=3- Z
(b) Similarly, we replace s with 2 in Theorem 1.1 (b) :

N (2)2nC* (2 4 2n)
Z (2n)122n

. =23 (2n+ 1) (2n +2
=@+ ((Zn)!Z)i( :

@y 2t 1)24;(% +2)

i +1)¢*(2n +2)

22n
_x (2n—1)¢*(2n)
- Z 22n 2

and so
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From (1.1) and (1.2

) we note that

n

oo (71)71 [eS) =)
:; ne — 2n Z 2n—1
= n=1 n=
. o0 1 o0
- ;E 2 (20— 1)
(oo}
“2 Gy

and so

Here we yield that

which leads that

Proposition 2.1. (See [3], [4])
(a)

(b)

n=1

oo

n

G =2 @ -,

1

o0 1 o0 o0
- Zl ne 21 (2n + 21 2n — 1
=27°¢(s) +27°¢(s) = ¢7(s)
=217°¢(s) — C*(S),
C"(s) = (277 = 1)¢(9). (2.3)
7'7o¢(s) = 2°T(1 — $)¢(1 — s) sin g
I'(1—s)(s) = Si;ﬂs, s¢ 7.

Proof of Theorem 1.2. Letting s — 1 in Theorem 1.1 (b) and recalling Eq. (2.3) and Proposition

2.1, we have

. s—1
fim {2

Zos(s+1)---(s+2n—1)C"(s + 2n)

(2n)122n

(8)2nC" (s + 2n)
(2n)122n

—¢"(s)}

—1—lim(2'7° = 1)¢(s)

s—1

—1—1lim (27" — 1) 2°7°'T(1 — s)C(1 — s) sin
s—1 2

A — Hm(2 1) 25 T (1 — s sin 2
sﬂ( ) ¥ I'(s) sin7rs<( s)sin 2
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3 Conclusion

In this article we modify the Riemann zeta function and consider their infinite sums.
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