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Abstract

In this paper, we prove a fixed point theorem in the framework of complete partial b-metric space.
Inspiring from Suzuki and Piri-Afshari. The article also includes an example which shows the validity of
our result.
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1 Introduction

Fixed point theory is one of the most important tools in the development of mathematics because it plays an
essential role in applications of many branches of mathematics. For this reason, several researchers studied
the fixed point of contractive maps (see for example [1] and references therein).

In 1992, Polish mathematician Banach [2] proved a very important result regarding a contraction mapping,
known as Banach contraction principle. It is one of the fundamental results in fixed point theory. Due to its
importance, several authors have obtained many interesting extensions and generalizations of metric spaces
and Banach contraction principle; see [3-12] and references therein.

In this sequel, in 1989, Bakhtin [13] introduced the concept of b-metric spaces and presented the contraction
mapping in b-metric spaces that is generalization of the Banach contraction principle in metric spaces (see
also Czerwik [14]. After that, fixed point results in b-metric spaces were studied by several researchers; see
[15-25] and references therein. On the other hand, Matthews [26,27] introduced the notion of a partial metric
space which is a generalization of usual metric space. Also, he generalized the Banach contraction principle
in the context of complete partial metric spaces. Recently, many researchers have focused on partial metric
spaces and obtained many useful fixed point results in these spaces (see [28-30,16,31,32,21]) and references
therein). Very recently, Shukla [33] introduced partial b-metric spaces as a generalization of both bmetric
spaces and partial metric spaces. Moreover, he proved Banach contraction principle as well as the Kannan
type fixed point theorem in partial b-metric spaces.

Several authors have obtained many interesting extensions and generalizations of metric spaces (see [34-38])
and references therein.

In this paper, motivated and inspired by ideas of some recent papers such as Mustafa et al. [39], Suzuki [4],
Wong [40] and Shukla [33], we obtain some fixed point theorems in partial b-metric spaces. Our result is the
generalization of the result announced by Suzuki [4], Wong [41] and Shukla [33,41] Piri.H, Afshari and
some others. Throughout this paper, R, R* and N denote the set of real numbers, the set of nonnegative real
numbers and the set of positive integers, respectively. We proved a fixed point theorem in partial b-metric
space.

Before proving our main results, we define some definitions, basic properties, examples and Lemmas of b-
metric space, partial metric space and partial b-metric space needed in the sequel.

Definition 1.1 [26]: Let X be a nonempty set and s = 1 be a given real number. a mapping d: X X X - R*
is said to be a b-metric if for all x,y,z € X the following conditions are satisfied:

(b)) d(x,y)=0ifandonlyi fx = y;

(b2) d (x,y) = d(y,x);

(b3) d (x,y) < s[d(x,2) +d(z,y)].

In this case, the pair (X,d) is called a b- metric space ( with constant s).

Remark: The class of b-metric space is the generalization of metric space. If s = 1, then b-metric space
converts into metric space.

Examplel.2: Let (X, d) be a metric space and o(x,y) = (d(x,y))? wherep > 1, Then o is a b-metric for

s =2P71,
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Proof: (i) For x = y theno(x,x) = (d(x,x))? =0

(i 9)o(x,y) = (d(x,y)? = (d(y,x)P = a(y,x)

(i i)Y if p > 1 then by then convexity of the functionf(x) = xP = (aTer)p < %(ap +bP)=(a+b)? =

2P~1(gP + bP). So forall x,y,z € X , we have

o(x,y) = (d(x, )P < (d(x,2) +d(z,y))P < 2P71(d(x,2))? + (d(z, )P < 2P Ho(x,2) + 0(z,)}
Hence (X, o) is a b-metric space.

Example 1.3: Let X = R be the set of real number and d(x,y) = |x — y| a usual metric. Then o (x,y) =
[x — y| is a b-metric space for k = 2 but not for R.

Example 1.4: Let X =[0,00) and d: X X X - R* is a mapping defined as d(x,y) = |x — y|?.Then(X, d)
isa

b-metric space. Where p is a real number such that p > 1.

Proof: (a)d(x,y) =0=|x—y|P=0=>x=y

(b dx,y) = lx—y|P =y —x|P = d(y,x)

(©)Letu=x—z,v=z—y,thend(x,y) = |x —y|P = |lu+v|? < [u|’ + |v|P < (2 nax |u|, |v|)?
< 2P(Jul? + [v|P) = 2P(Jx — z|P + [z — y|P)

= (X, d) is a b-metric space with a constant s = 2P,

Definition 1.5 [26]: Let X be a nonempty set. A mapping p : X X X — R* is said to be a parietal metric on
Xifforall x,y,z € X the following conditions are satisfied:

(p1) x=yifandonlyi fp(x,x) =px,y) =p®».¥);
w2) prlx) <pky);
P3) prky) =py);
®s) ply)<plz)+piy)—pz2).

In this case, the pair (X,d) is called a partial metric space.

Example 1.6: Let X = {[a,b],a,b € R,a < b} and define as p([a, b],[c,d]) = max(b,d) —m n (a,c),
then
(X, p) is a partial metric spaces.

Definition 1.7. [33]: Let X be nonempty setand s = 1 be a given real number, A mapping p,: X X X -» R*
is said to be a partial b-metric on X if for x, y, z € X the following conditions are satisfied:

(pp1) x=yifandonlyi fp,(x,x) = pp(x,¥) = PV, ¥);
(pp2) P, %) < pp(x,y);

p3)  pr(x,y) = pp(x,¥);

(pps) P2, y) < s[pp(x,2) + pp(z,¥)] — pp(2, 2).

In this case, the pair (X, pp) is called a partial b-metric space ( with constant s).
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Remark: Every b-metric space is a partial b-metric space for s = 1 and similarly every partial metric space
is a partial b-metric space for s = 1, but the converse is not true.

Example 1.8: Here is an example that shows a partial b- metric space is not partial metric space.
Let X = {1,23}and py(L,1) =1, pp(12) =pp(21) =6, pp(2,2) =5p,(3,2) =py(23) =4,
pr(1,3) = p,(3,1) = 9,p,(3,3) = 9.

pr(L,1) = p,(2,2) = pp(3,3) # 0

pp(3,2) +p,(2,1) —pp(2,2) =6+4—-5=5<9 =p,(3,1) = (X,p) is not a partial metric space.
2[pp(3,2) + pp(2,1)] = pp(2,2) =20—-5=15>9 = p,(3,1) = (X, p) is a partial b- metric space.

Definition 1.9 [33]: Let (X, p,) be a Partial b- metric space with constant s, and let {x,,} be a sequence in X
and x € X, then :

(a) The sequence {x,} is said to be converge to x € X i f p,(x,x) = -7, (x, x,.);

(b) The sequence {x,} is said to be Cauchy in (X,pp) , if pm iy (X, xpy) exists and is finite;

(¢) (X, pp) is said to be complete if for every Cauchy sequence {x, } in X there exists x € X such that
DDy (i %) = 0 © pp(6,0) = 5 Kby (X0, %) = LDy (X Xm)

2 Main Result

Theorem 2.1: Let (X, pp) be a complete partial b- metric space with constant s > 1 and T: X — X be a self
map on X. Suppose M € [0, ) and functions @; € [0,) — [0,%), wherei = 1,2,3,4, such that
(2.2) Functions «; are upper semi continuous from right.

1

(24) 5Py (6, TX) < Py (x,) =
Py (6, ¥) b (Tx, Ty) < a1 (py (x,¥))? + [Py (x, y)pp (x, X) + Py (x, )y (x, T)]

+az[pp 4 )0 0, ¥) + 00 6 VP 7, TY)] + auMax {p, (x, y), pp (X, X), b (v, ¥) 30 (x, ¥)

forallx,y € X. Then T has a unique fixed point in X.

Proof: First we shall prove that if T has a fixed point, then it is unique. Let x, y € X be two distinct points of
T such that x # y = Tx # Ty. Therefore p,(x,y) > 0. If p,(x,x) = 0, then we have 0 = 2—1spb(x, x) =

ipb (x, Tx) < pp(x, ). If pp(x, x) > 0. From p, we conclude that %pb (x,Tx) = épb (x,x) <pplx,x)
< pp(x, y). Using the inequality (2.2), (2.3) and (2.4), we have

(6, 1)) = (%, ¥) Pp(Tx, Ty) < a1 (pp (%, ¥))* + [Py (x, ¥) Py (x, x) + pp (x, ¥) 0 (x, TX)]
+az[pp (6, )0 0, ¥) + 06 (0, )0 0, TY)] + auMax {py,(x, y), 0y (x, x), 0 (v, ) Y0 (x, )
= al (pb (x’ y))z + aZ [pb (X, Y)Pb (X, x) + pb (X, Y)Pb (x, X)]
+as[py (6, YIp (v, ¥) + 2o (6, )0 0, Y)] + Mau{p, (x, ¥)}pp (x, y)
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< a;(pp (%, ¥))? + ax[pp (x, )0 (x, ) + 0y (x, )Py (x, Y]
+as[py (6, Y0 (x, ¥) + pp (6, ) (X, V)] + May{py, (x, y)}pp (%, y)

@p (0, 1))? < [ay + 2a; + 2a3 + May](py (x, ¥))?
< 25P(6,Y) <py(x,)
This is a contradiction. So x = y. Choosing x, € X such that
Xy =Txg, %, =Tx1 , X3 =Tx5, . Xpypq =Txy; By =0p( xp Txy)

If there exits ann € N, such that P, = 0, then proof is finished. So we assume that foralln € N, P, =
Py O, Tn) = D (s Xng1) > 0 = o=y (0, T) < Py G, T

Do G TX )Py (T, T20,) < 3 (P (e T))” + € (s T [P (s ) + 1 (i, T

+as pp(n, Txn) [P (Txy, Txn) + Py (Ttn, T?x)]

+a4M1x {pb (xn: Txn)' Db (xn' xn)r (Txn' Txn)}pb (xn: Txn)
2
< a (pb (xnr Txn)) + A2Pp (xn: Txn)[ 2s Pp (xn' Txn) + Pp (xn: Txn)]

+as pp (xn' Txn)[ 2s py (Txn! szn) + Dy (Txn' szn)] + a,M{p, (xn! Txn)}pb (xn! Txn)

2
Pp (xnr Tn)pb(xTxn: szn) < al(pb(xn' Txn)) + (25 + 1)“2 (pb (xnr Txn))z
+(25 + 1)“3 Pb (xn' Txn)pb (Txn’ szn) + a4M{pb (xn' Txn)}pb (xn: Txn)

(1= (2s + Das) p, O, Tx)pp (Txy, T?x,) < (a; + (2s + Day+a,M) (pp (x, Tx,))?
(1—2s + 1Daz) P,Pyys < (a3 + (25 + Day+a,M) P2

(o + 2s + Day+a,M)
= (1- (25 + Das) n

Since a; + (2s + Da,+(2s + Dag + a,M < 2s [aq + 20,42 ag + a,M] < 232%21: < ft forallt>0
(a1+2s+1D)az+a,M)
(1-(2s+1Daz)
{B,} is a decreasing sequence which is bounded from below and n € [0,1).Hence {B,} converses to a point
p € [0,1). So we have

< 1, therefore py,(Tx,, T?x,) = Ppy1 < B, = pp(x,, Tx,) foralln € N implies that

o . (@B + (25 + Day(P)+Mr 4(By))
p=imh < limsuph, <Ii msup (=25 + Daz(B) "
(o, (p) + (25 + Dty () + Mz ,(p))
=T A-@s+Dme)

This is a contradiction. Therefore

p<p

li mB, = li mp,, (x,,, Tx,,) =0
n—-oo n—-oo
Now we shall show that limy, ,,,,..pp (X, X,,) = 0.

We shall prove it via contradiction. Assuming3 € > 0, there exist two sequences p(n),q(n) € [01) such
that p(n) > q(n) > n, pb(xp(n), xq(n)) >eand pb(xp(n)_l, xq(n)) < e foralln € N.Sowe have

& < Dy (Xpmy Xqmy) < S[Ps(Fpy Xpmy-1) + 2o (Xpmy-1 Xqm))] = Po (pmy-1 Xp(my-1)
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< s[op (Kpy Xpmy-1) + Po (o1 Xgm) )] < 56 (Xpny Xpmy-1) + €

Also we have
£< linriiwnﬁab(xp(n),xq(n)) < li nsupp, (xp(n),xq(n)) <se¢
n—-owo

As we have already prove that li m,_,.pj, (x,, Tx,) =0 = li mp, (xp(n), Txp(n)) =0
n—-owo

1
= zpb(xp(n)'Txp(n)) <eg

Again we have
1
75 Po (X TXp(m) < 2o (o1 Xqamy+1) < Py (T2p(y TXa(my)

Using the inequality ( 2.4) we have
P (Xp (), Xgm) ) (Txpy, TXgmy)
= (Pb(xp(n»xq(n)))z + a0y (%) Xa ) [P (Kp ey Xp(my) + 0o (pny, TXp(my) |
3P (Xny TXq) [Py (Xg(my Xa)) + Po(Xgemy TXqew)]
+May{py (Xpen), Xam) )b (o), Xp ) )P5 (X, Xq) )36 (X Xq(my)
< a: (Po(Epimy Katm) + 2P0ty Fa)[25 Po oty Fatny) + 2o (Kot )]

2
+a3Py (Xny Txq(m)) (25 Po (Xp ) Xq(m) + Do (Xgen Txqem)] +Maty (Pb (o xq(n)))

2
= (a1 +2sa; + 25 a3 + Ma,) (Pb(xp(n»xq(n))) + a2 o (o) Xam) )P (Focny Tpim))

+aspp (Xnpy TXqm) )b (Xq(my TXq@m))

1 2
P (%p0m), Xa() )P (TXp ), TXgmy) < 252 (pb (*pm» xq(n)))
+ ﬁpb (%pey Xaem) )Po (Xpny TXp(my) + ﬁpb (tny Txam)Po (Xqemy TXq(m)

= 2 < li msupp, (xp(n)'xq(n))pb(Txp(n)'qu(n)) =li msup pb(xp(n)'xq(n))pb (xp(n)+1'xq(n)+1)
n-—w n—-oo

1 2
S5a [(Po Cepnr Xam)) + P (Ko Zam IPo Ceptr Xp41) + Po(Encor T P (Ko aty+1)]

1 2 _1 2 2
< — ==
=52 (s¢ 2(8) < e

This is a contradiction. Hence pj,(x,, x,,) = 0. Since (X, pp,)is a complete partial b-metric space, therefore
there exists a x € X such that

pp(x,x) = li mp,, (xn, 1) = 1i mpy, (2, ) = 0



Kumar et al.; ARJOM, 8(4): 1-11, 2018, Article no.ARJOM.39819

Now we shall prove that foral ln € N,

22D Cn, TXn) < Py (n, %) 07 5=y (T, T?x) < Py (T, X)
Again using contradiction, we assume that

2P Gen, Txn) 2 Py (i, %) 07 5Py (T, T2%) = Py (T, X)
Therefore

Py (X, Txy,) < S[pp (o, x) + 0y (x, Txy)] — pp (x, x)
< S[pb (xn' x) + Pp (x' Txn)]

1 1
= SZ pb(Txn! xn) +s Zpb(Txn, szn)
1 1
= E Pp (Txn!xn) + ;pb (Txn,szn)

< % pb(Txn!xn) + %pb (Txn' xn)

< Pp (Txn' xn)
This is a contradiction. Hence

ipb (xn, Txy) < pp(xp, x) o1 Zl—spb(Txn, T%x,) < pp(Txp, x)

Now we shall prove Tx = x. We shall prove it by contradiction. Let Tx # x and P,.; = pp(Tx, T?x,,) >
P,, = p,(x, Tx,). Using the inequality (2.4), we have

Py (T, %) Py (T, T22,) < a4 (P (0, T)) + aapp G, T [ (e, %) + py (2, Tty
+as pp (6, Txn) [Py (T2, Txn) + 0y (T, T?,)]
+agMax {py(x, Txn), by (x, ), (Txn, Txn)}pp (x, TXy)

< (s (0, Tx))” + 2y (6, T2, [25 py (6, Tt) + P (2, T,)]

+as pp (x, Txn)[25 pp, (x, Txy) + Py (Txn, T?x0)] + Maa{py (x, Tx)}pp (x, Txy)
< @, (pp (6, Tx)” + (25 + Dy py(x, Ty (2, Tx,)

+25 a3 pp (6, TX)Py (¥, Txy) + @ Py (6, TxR) Py (T, Tx) + Maapy, (x, Txy) pp (%, Txy)
< (a; + (2s +1) +2sas + +Ma,) pp(x, Tx,)pp (x, Tx,) + as py(x, Tx,)pp (Tx,, T?x,,)
(1 — a3)pp (x, Tx,) pp(Tx,, T?x,) < (1 + (25 + 1) + 25 a3 + May)p, (x, Tx,,) pp(x, Tx,,)
(1= a3)P, Ppor < (g + 25 + 1) + 25 a5 + Ma,)P,>

(051+(25+1)+250(3+M0(4)P2

B Pryy =

(1—-a3) "
p <(a1+(25+1)+25a3+Ma4)P
n+1 = (1 _ a3) n
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Since a; + (2s + Da,+(2s + Das + a,M < 2s [a; + 20,42 a5 + a,M] < Zsét < it forallt>0

:(a1+(25+1()1az;— §5a3+a4m < 1. Therefore py,(Tx,, T?x,) = Ppyy < B, = pp(x,Tx,) foral In € N. This is
—u3

a contradiction. Therefore P,,; = P, = pp(Tx,,, T?x,) = pp(x,Tx,) = x = Tx,, = Tx. Hence x is a fixed

point.

Now we shall prove that x is unique. If possible Let u is another fixed point such that Tx = x and Tu = u.
Py (x,w) = pp(Tx,Tu) < aypy(x, Tu) + az[py(x, x) + pp (x, Tx)]
+az [pp (W, w) + pp (w, Tw) + ayMax {py (x,w), pp (x, %), (u, w)}]
< aypp (6, u) + az[py (x, x) + pp (x, 0)] + as[py (W, w) + pp (W, W] + Mayp, (x,u)
< app(x,u) + 4 ay pp(x,w) + 4 az pp(x,u) + Mayp, (x,w)
pr(x,u) < (ay +4sa, + 4s as + May)p,(x,u)

This is a contradiction, sincea; + 4s @, + 4s az; + Ma, < 2s [a; + 20,42 a5 + a,M] < Zsﬁt < it
forallt > 0 = x = u. Hence x is a unique fixed point.

This completes the proof.
Example: let (X, p,) be a partial b- metric space, where X = R and p,: R = R is a self map. Define as
Py, y) = |x—y[>+3

9 13 9 37 9 9
Ifx=4y=7z2=> thenp,(47) = 12,p,(49/2) = =,p, (5.7) =2, py (3,5) =3

<49)+ (9 7) (99)_13+37 3= e
Pp 12 Pb 2' Py 2'2 - 4 4 - 2 * = pPpl4,

Clearly (X, pp) is not a partial metric space, but

2 <49)+ (97> (99)—213+37 3=22=212=1p,(4,7)
{py '3 Pp 2’ }—po 2'2) = {4 4} = = = Ppr\%

= (X, pp) is a partial b- metric space. Therefore satisfies all the conditions of the Theorem 2.1.
3 Conclusion

In this paper, we gave a newly fixed point theorems for Partial b-metric space. We hope that our study
contributes to the development of these results by other researchers.
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